

SWITCHES - MOTORS - CONTROLLERS

Handbuch SAIA[®] S-Bus

Deutsche Ausgabe 26/739 D4

GB: Electronic Controllers	Telefon	026 / 672 71 11
	Telefax	026 / 670 44 43

SAIA-Burgess Gesellschaften

Schweiz	SAIA-Burgess Electronics AG Freiburgstrasse 33 CH-3280 Murten ☎ 026 672 77 77, Fax 026 670 19 83	Frankreich	SAIA-Burgess Electronics Sàrl. 10, Bld. Louise Michel F-92230 Gennevilliers ☎ 01 46 88 07 70, Fax 01 46 88 07 99
Deutschland	SAIA-Burgess Electronics GmbH Daimlerstrasse 1k D-63303 Dreieich ☎ 06103 89 060, Fax 06103 89 06 66	Niederlande	SAIA-Burgess Electronics B.V. Hanzeweg 12c NL-2803 MC Gouda 2 0182 54 31 54, Fax 0182 54 31 51
Österreich	SAIA-Burgess Electronics Ges.m.b.H. Schallmooser Hauptstrasse 38 A-5020 Salzburg ☎ 0662 88 49 10, Fax 0662 88 49 10 11	Belgien	SAIA-Burgess Electronics Belgium Avenue Roi Albert 1er, 50 B-1780 Wernmel ☎ 02 456 06 20, Fax 02 460 50 44
Italien	SAIA-Burgess Electronics S.r.l. Via Cadamosto 3 I-20094 Corsico MI ☎ 02 48 69 21, Fax 02 48 60 06 92	Ungarn	SAIA-Burgess Electronics Automation Kft. Liget utca 1. H-2040 Budaörs ☎ 23 501 170, Fax 23 501 180

Vertretungen

Gross- britannien	Canham Controls Ltd. 25 Fenlake Business Centre, Fengate Peterborough PE1 5BQ UK ☎ 01733 89 44 89, Fax 01733 89 44 88	Portugal	INFOCONTROL Electronica e Automatismo LDA. Praceta Cesário Verde, No 10 s/cv, Massamá P-2745 Queluz
Dänemark	Malthe Winje Automation AS Håndværkerbyen 57 B DK-2670 Greve 270 20 52 01, Fax 70 20 52 02	Spanien	Tecnosistemas Medioambientales, S.L. Poligono Industrial El Cabril, 9 E-28864 Ajalvir, Madrid 2 91 884 47 93, Fax 91 884 40 72
Norwegen	Malthe Winje Automasjon AS Haukelivn 48 №1415 Oppegård ☎ 66 99 61 00, Fax 66 99 61 01	Tschechische Republik	ICS Industrie Control Service, s.r.o. Modranská 43 CZ-14700 Praha 4 ☎ 2 44 06 22 79, Fax 2 44 46 08 57
Schweden	Malthe Winje Automation AB Truckvägen 14A S-194 52 Upplands Våsby ☎ 08 795 59 10, Fax 08 795 59 20	Polen	SABUR Ltd. ul. Druzynowa 3A PL-02-590 Warszawa ☎ 22 844 63 70, Fax 22 844 75 20
Suomi/ Finnland	ENERGEL OY Atomitie 1 FIN-00370 Helsinki ☎ 09 586 2066, Fax 09 586 2046		
Australien	Siemens Building Technologies Pty. Ltd. Landis & Staefa Division 411 Ferntree Gully Road AUS-Mount Waverley, 3149 Victoria 2 3 9544 2322, Fax 3 9543 8106	Argentinien	MURTEN S.r.I. Av. del Libertador 184, 4° "A" RA-1001 Buenos Aires 🕿 054 11 4312 0172, Fax 054 11 4312 0172

Kundendienst

SAIA-Burgess Electronics Inc.
1335 Barclay Boulevard
Buffalo Grove, IL 60089, USA
🕿 847 215 96 00, Fax 847 215 96 06

SAIA[®] Process Control Devices

Handbuch

SAIA[®] S-BUS

für die PCD-Familie

SAIA-Burgess Electronics AG 1996 - 2000. Alle Rechte vorbehalten Ausgabe 26/739 D4 - 04.2000

Technische Änderungen vorbehalten

Anpassungen

Datum	Abschnitt	Seite	Beschreibung
11.05.2000	6.6	6-8 / 6-9	Gateway-Master, erweiterte Tabelle
06.10.2000	3.12	3-53	SYSWR : Code 6000 (Schreiben ins EEPROM)

Handbuch: SAIA S-Bus für die PCD Familie - Ausgabe D4

Inhalt

Seite

1. Einführung

1.1	Was	s ist der SAIA [®] S-Bus ?	1-1
1.2	Тур	ische Anwendungen	1-3
1.3	Cha	rakteristische Daten	1-5
1.4	Das	S-Bus Protokoll	1-7
	1.4.1	Application Layer	1-7
	1.4.2	Presentation Layer	1-7
	1.4.3	Network Layer (Netzwerk-Schicht)	1-8
	1.4.4	Data Link Layer	1-10
	1.4.5	Physical Layer	1-12

2. Installation

2.1	Punkt-Punkt Verbindung	2-1
2.2	S-Bus Netzwerk	2-2

3. Datentransfer Service

3.1	Funktie	onsprinzip und Anwendung	3-1
3.2	PCD-E	Befehle für den S-Bus	3-7
3.3	SASI	- Assignierung der seriellen Schnittstelle	3-8
3.4	SRXM	- Empfange Daten von einer Slave-Station	3-25
	3.4.1	Spezialfunktionen	3-27
	3.4.2	Transfer von Datenblöcken (Lesen)	3-28
	3.4.3	Praktische Anwendungen	3-31
3.5	STXM	- Sende Daten zu einer Slave-Station	3-33
	3.5.1	Spezialfunktionen	3-35
	3.5.2	Transfer von Datenblöcken (Schreiben)	3-36
	3.5.3	Praktische Anwendungen	3-38

3.6	SASII	- Indirekte Assignierung serieller Schnittstellen	3-40
3.7	SRXMI	- Lese Daten indirekt	3-41
3.8	STXMI	- Sende Daten indirekt	3-44
3.9	SICL	- Prüfen von Steuersignalen	3-46
3.10	SOCL	- Beeinflussen von Steuersignalen	3-47
3.11	SYSRD	- System-Daten lesen	3-49
3.12	SYSWR	- System-Daten schreiben	3-52
3.13	Kommun	iikation via Modem	3-55
3.1	3.1 M	Iultipoint Modems und Converter	3-56
3.1	3.2 N	Iodem für das öffentliche Telefonnetz	
		der Telecom	3-60
3.14	Anwende	er-Programmbeispiele in IL	3-61
3.1	4.1 B	eispiel 1	3-61
3.1	4.2 B	eispiel 2	3-64
3.15	Anwende	er-Programmbeispiel in FUPLA	3-67

4. Inbetriebnahme

4.1	Wich	tigste Eigenschaften und Anwendungen	4-1	
4.2	Loka	Lokale Programmierung und Inbetriebnahme		
4.3	Konfi	igurierung und Assignierung einer S-Bus		
		PGU-Schnittstelle	4-5	
	4 2 1		4.5	
	4.3.1	RAM-Speichermodule	4-5	
	4.3.2	EPROM-Speichermodule	4-9	
4.4	Verbi	ndung des Programmiergerätes via den S-Bus	4-11	

Seite

5.	Mode	ems	
5.1	Daten	nübertragungsraten	5-2
5.2	Betrie	b des eigenen Modems	5-4
	5.2.1	AT-Befehle	5-5
	5.2.2	Wichtige Konfigurationsparameter für PG4	F 7
	523	und PCD-Modems Konfigurierung der PCD Utilities für das	5-7
	5.2.5	eigene Modem	5-9
	5.2.4	PCD und Modem	5-14
	5.2.5	Ablaufsequenz des Modems in der PCD	5-16
5.3	Verbi	ndung über das öffentliche Telefonnetz	5-19
	5.3.1	Aufbau	5-19
	5.3.2	Konfigurierung der PCD	5-21
	5.3.3	Konfigurierung des PC (PG4)	5-23
	5.3.4	Aufbau der Verbindung	5-27
	5.5.5 5.3.6	Storungsbenebung Boondung einer Verhindung	5-30 5-31
	5.5.0	beendung einer verbindung	5-51
5.4	Mode	m +	5-32
	5.4.1	Diagnose (SASI DIAG)	5-33
	5.4.2	SICL-Anweisungen	5-33
	5.4.3	UNDO/REDO ein S-Bus PGU-Port (SASI OFF)	5-34
5.5	Beisp	iel eines PCD-Programmes	5-39
6.	S-Bus	s Gateway	
6.1	Einlei	tung	6-1
6.2	Eigen	schaften des Gateways	6-2
6.3	Konfi	gurierung eines Gateway Master Ports (GMP)	6-3
6.4	Konfi	gurierung des Gateway Slave Ports	6-6
	6.4.1	S-Bus-PGU	6-6
	6.4.2	SASI Anwenderanweisung	6-6
6.5	Verwe	endung von STXM/SRXM in der Gateway-Station	6-7
6.6	Setzei	n des Timeouts in einem S-Bus Netzwerk	6-8
6.7	Mögliche Fehlerquellen		6-10

Seite

7.	Verwendung des S-Bus mit dem PG3	
7.1	Definition der Stationsnummer	7-2
7.2	Konfigurierung und Assignierung einer S-Bus PGU-Schnittstelle	7-4
7.2	2.1 RAM-Speichermodule	7-4
7.2	2.2 EPROM-Speichermodule	7-7
7.3	Verbindung des Programmiergerätes via den S-Bus	7-8
7.4	Konfigurierung des PCD Utilities für das eigene Modem	7-9
7.5	Verbindung über das öffentliche Telefonnetz	7-14
7.5	5.1 Aufbau	7-14
7.5	5.2 Konfigurierung der PCD	7-15
7.5	5.3 Konfigurierung des PC (PG3)	7-17
7.5	5.4 Aufbau der Verbindung	7-19
7.5	5.5 Störungsbehebung	7-20
7.5	5.6 Beendung einer Verbindung	7-21
7.6	Beispiel eines PCD-Programmes (mit Modem)	7-22

	1	0		/	
7.7	Konfigurierung	geines Gateway	Master Ports	(GMP)	7-28

8. Anhang

A	Kompatibilität bei Verwendung des S-Bus bei 38.4 KBaud	8-1
В	S-Bus PGU Schnittstellen und Kabel	8-2
С	Firmware- und Softwarekompatibilität	8-7

Wichtiger Hinweis:

Um den einwandfreien Betrieb von SAIA[®] PCD sicherstellen zu können, wurde eine Vielzahl detaillierter Handbücher geschaffen. Diese wenden sich an technisch qualifiziertes Personal, das nach Möglichkeit auch unsere Workshops erfolgreich absolviert hat.

Die vielfältigen Leistungen der SAIA[®] PCD treten nur dann optimal in Erscheinung, wenn alle in diesen Handbüchern aufgeführten Angaben und Richtlinien bezüglich Montage, Verkabelung, Programmierung und Inbetriebnahme genau befolgt werden.

Damit allerdings werden Sie zum grossen Kreis der begeisterten SAIA[®] PCD Anwendern gehören.

Übersicht

Zuverlässigkeit und Sicherheit elektronischer Steuerungen

Die Firma SAIA-Burgess Electronics AG konzipiert, entwickelt und stellt ihre Produkte mit aller Sorgfalt her:

- Neuster Stand der Technik
- Einhaltung der Normen
- Zertifiziert nach ISO 9001
- Internationale Approbationen: z.B. Germanischer Lloyd, UL, Det Norske Veritas, CE-Zeichen ...
- Auswahl qualitativ hochwertiger Bauelemente
- Kontrollen in verschiedenen Stufen der Fertigung
- In-Circuit-Tests
- Run-in (Wärmelauf bei 85°C während 48h)

Die daraus resultierende hochstehende Qualität zeigt trotz aller Sorgfalt Grenzen. So ist z.B. mit natürlichen Ausfällen von Bauelementen zu rechnen. Für diese gibt die Firma SAIA-Burgess Electronics AG Garantie gemäss den "Allgemeinen Lieferbedingungen".

Der Anlagebauer seinerseits muss auch seinen Teil für das zuverlässige Arbeiten einer Anlage beitragen. So ist er dafür verantwortlich, dass die Steuerung datenkonform eingesetzt wird und keine Überbeanspruchungen, z.B. auf Temperaturbereiche, Überspannungen und Störfelder oder mechanischen Beanspruchungen auftreten.

Darüber hinaus ist der Anlagebauer auch dafür verantwortlich, dass ein fehlerhaftes Produkt in keinem Fall zu Verletzungen oder gar zum Tod von Personen bzw. zur Beschädigung oder Zerstörung von Sachen führen kann. Die einschlägigen Sicherheitsvorschriften sind in jedem Fall einzuhalten. Gefährliche Fehler müssen durch zusätzliche Massnahmen erkannt und hinsichtlich ihrer Auswirkung blockiert werden. So sind z.B. für die Sicherheit wichtige Ausgänge auf Eingänge zurückzuführen und softwaremässig zu überwachen. Es sind die Diagnoseelemente der PCD wie Watch-Dog, Ausnahme-Organisations-Blocks (XOB) sowie Testund Diagnose-Befehle konsequent anzuwenden.

Werden alle diese Punkte berücksichtigt, verfügen Sie mit der SAIA[®] PCD über eine moderne und sichere programmierbare Steuerung, die Ihre Anlage über viele Jahre zuverlässig steuern, regeln und überwachen wird.

1. Einführung

1.1 Was ist der SAIA[®] S-Bus?

S-Bus ist primär die Bezeichnung für ein effizientes Kommunikationsprotokoll für die SAIA[®] PCD Steuergeräte Generation. Der S-Bus kann einerseits in der Punkt/Punkt-Kommunikation als auch in einem lokalen Master/Slave-Netzwerk eingesetzt werden.

Im Punkt/Punkt-Verkehr können alle seriellen PCD-Schnittstellen verwendet werden.

Als physikalisches Übertragungsmedium für das Netzwerk dient die busfähige Schnittstelle RS485 mit einem 2-adrigen, verdrillten und abgeschirmten Kabel. Mit dem S-Bus können bis zu 255 PCD-Systeme, aufgeteilt in bis zu 8 Segmente, bestehend aus je max. 32 Stationen, einfach und kostengünstig miteinander vernetzt werden.

Der SAIA[®] S-Bus zeichnet sich besonders durch die folgenden Eigenschaften aus:

- Einfache Handhabung (Installation, Inbetriebnahme und Anwenderprogramm)
- Günstiger Preis, da das S-Bus Protokoll in jedem PCD-Prozessor bereits enthalten ist. Somit ist kein zusätzlicher spezieller Kommunikationsprozessor notwendig.
- Hohe Übertragungssicherheit dank der CRC-16 Fehlererkennung.
- Hohe Datenübertragungsrate dank Verwendung des effizienten binären Protokolls mit einer Übertragungsgeschwindigkeit bis zu 38.4 kBd.
- Daten-Fern-Übertragung und -Diagnose via Modem für Stand- und Wahlleitungen wird unterstützt.
- Für Prozessleitsysteme z. B. von WIZCON, Genesis, InTouch oder FactoryLink und Fix D-Macs sind Treiber vorhanden.
- Mit der Anwendungsstufe 2 hat auch die Programmiereinheit Zugriff auf jede Slave-Station im lokalen Netz. Dadurch können die Funktionen der Programmiereinheit (beispielsweise der Debugger) für alle angeschlossenen Slave-Stationen von einem zentralen Ort aus über das ganze Netzwerk genutzt werden.
- Multi-Master Möglichkeiten durch Einsatz von S-Bus Gateway.
- Zugriff auf alle Medien im Slave möglich.

Glossar

P8 oder P800	auch D-Modus genannt: Originalprotokoll für die Pro- grammiereinheit (Programmiergerät).
PGU	Programmiereinheit (Programmiergerät). "PGU" ist auch die Bezeichnung der seriellen Schnitt- stelle, an welcher das Programmiergerät angeschlossen wird. Mit "PGU" wird auch das Protokoll, welches vom Programmiergerät verwendet wird, bezeichnet.
PLM	Modem für öffentliche Telefonleitungen (Public Line Modem).
PSTN	Öffentliches Telefon-Wahlnetz (Public Switched Tele- phone Network).
SCADA	Prozessleit- und Datenerfassungssystem (Supervisory Control And Data Acquisition)
SCS	Prozessleitsysteme (Supervisory Control Systems)
GSM	Globales System für Mobiltelekommunikation (Global System for Mobile communication) (Handies)
ISDN	Dienstintegriertes Digitalnetz (Integrated Services Digital Network)

1.2 Typische Anwendungen

Das S-Bus Protokoll wurde speziell für das RS485 S-Bus Netzwerk entwickelt, kann jedoch auch zusammen mit den anderen seriellen Schnittstellen für den Aufbau einer Punkt/Punkt-Verbindung verwendet werden.

Als Master-Station kann eine PCD1, PCD2, PCD4 oder eine PCD6, die Programmiereinheit oder ein beliebiges Fremdsystem (z.B. ein Prozessleitsystem wie WIZCON, FactoryLink, InTouch, Fix DMACS, etc.), welches über einen Treiber für das S-Bus Protokoll verfügt, eingesetzt werden.

Ohne Repeater ist es möglich, bis zu 32 Stationen miteinander zu verbinden, dies über eine Distanz von maximal 1'200 m.

Netzwerk mit "Multipoint"-Modem zur Überbrückung von grossen Distanzen unter Verwendung von Standleitungen der PTT oder privaten Leitungen. Als Verbindung zwischen dem Modem und der PCD wird dabei die im S-Bus-Modus eingesetzte RS232 Schnittstelle verwendet.

Das S-Bus Protokoll kann auch mit Modems eingesetzt werden, welche eine Übertragung zwischen SAIA[®] PCDs unter Verwendung des öffentlichen Telefonnetzes ermöglichen. Diese Verbindungen werden bei Fernüberwachung und/oder Fernprogrammierung und Ferninbetriebsetzung verwendet. Als Telefonnetze sind möglich: Analoge, Digitale (ISDN), Funk (GSM) usw.

Auch wenn das S-Bus Netzwerk einen Master und mehrere Slaves aufweist, erlaubt ein "Gateway" andern Mastern, welche mit dem ersten Master verbunden sind, mit allen am Netzwerk angeschlossenen Slaves zu kommunizieren.

1.3 Charakteristische Daten

Netzwerk

Master/Slave-Bus mit	einem und mehreren Slaves (Single Client / Multiple Servers)
Schnittstelle	RS485
Bus-Leitung	2-adrig verdrillt, abgeschirmt, Leiterquerschnitt min. 2 * 0.5 mm ² Länge max. 1'200m pro Segment
Anzahl Stationen:	max. 32 pro Segment, total max. 255
Anzahl Segmente:	max. 8, via PCD7.T100 Repeater miteinander verbunden

Punkt-Punkt Verbindung

Schnittstellen	RS232, RS422, 20mA CL
----------------	-----------------------

Elektrische Daten der Schnittstellen

Siehe dazu Hardware-Handbücher: PCD1 - PCD2, PCD4 und PCD6.

S-Bus-Protokoll

Baudrate:	einstellbar von 110	ois 38'400 Bit/s	
Startbit:	1		
Zeichenlänge	8 Bits		
Paritätsbit:	SM2/SS2-Modus: SM1/SS1-Modus: SM0/SS0-Modus:	keine Parität Parität 1 / 0 keine Parität	
Stopbit:	1		
Datenübertragungsrate	Standard: 167 H Maximum: 265 H	Register/s (bei 96 Register/s (bei 19	500 Baud) 9200 Baud)
Reaktionszeiten bei Üb	ertragungen mit 9600) Baud von:	
	1 bis 8 Ein-/Ausgänger 128 Ein-/Ausgänger 1 Register 32 Register	gen oder Flags 1 oder Flags	18ms 35ms 20ms 125ms
Fehlererkennung	CRC-16		

Programmierung

Folgende PCD-Befehle stehen zur Verfügung:

- Befehl zur Initialisierung der seriellen Schnittstelle
- Befehle für den Datenaustausch
- Befehle für die Behandlung der Steuerleitungen
- Lese- und Schreibbefehle der Systemparameter

Prozessleitsysteme

Für folgende Systeme sind Treiber für den S-Bus vorhanden:

- WIZCON
- Genesis
- FactoryLink
- InTouch
- Fix D-Macs
- Windows DDE

Zur Implementierung des S-Bus Protokolls in einem anderen System stellt SAIA-Burgess ein Softwarepaket in den Programmiersprachen C sowie Windows DLL bereit.

1.4 Das S-Bus Protokoll

Das OSI Modell angewendet auf den SAIA[®] S-Bus:

Das folgende Diagramm zeigt die Implementierung des Layers beim S-Bus Protokoll.

Application Layer	SAIA S-Bus reduziertes + komplettes Protokoll
Presentation Layer	Telegramm 0 255
Session Layer	nicht verwendet
Transport Layer	nicht verwendet
Network Layer	Forced parity mechanism
Data Link Layer	ACK/NAK Mechanismus
	Byte Synchronisation + CRC 16 Fehlererkennung
Physical Layer	RS485, RS232, 20mA CL, usw

1.4.1 Application Layer

Data transfer service (Level 1)

Reduziertes S-Bus Protokoll (Reduced Protocol). Eine Master-Station kann nur PCD-Daten lesen und schreiben sowie den Stations-Status der Slaves lesen (also kein Debugging).

PCD-Daten: Eingänge, Ausgänge, Flags, Register, Timer, Zähler, Datenblöcke und Hardwareuhr.

Dienstleistungen bei Inbetriebsetzung (Level 2)

Dieser Level unterstützt das vollständige S-Bus Protokoll (Full S-Bus), d.h. die Programmiereinheit (PGU) kann dazu eingesetzt werden, jede Slave-Station auf dem Netzwerk zu beeinflussen. Die Inbetriebnahme via S-Bus wird auch "S-Bus PGU" genannt. Der Zugang erfolgt auch über das öffentliche Telefonnetz. Die Inbetriebnahme und die Programmierung der Slave-Stationen können somit von einem zentralen Ort aus durchgeführt werden.

1.4.2 Presentation Layer

Die meisten Telegramme besitzen eine fixe Länge und brauchen deshalb keine speziellen Zeichen zur Markierung des Telegrammeendes. Die Telegramme haben ein Zählbit, welches unmittelbar nach dem Komandocode positioniert ist und Auskunft über die Telegrammlänge gibt. In den Antworttelegrammen wird kein Zählbit benötigt, da der Client die Länge der zu erwartenden Telegramme schon kennt.

Die absolute Maximallänge eines Telegramms zur Übertragung im Run-Betrieb beträgt 32 Register/Timer/Zähler oder 128 Flags/Eingänge/ Ausgänge. Einige spezielle Telegramme dürfen länger als die eben genannten sein, können aber im Run-Betrieb nicht verwendet werden. Es können beispielsweise beim Laden eines Programmes bis zu 64 Zeilen gleichzeitig übertragen werden, was eine maximale Telegrammlänge von 263 Bytes ergibt.

Beispiel eines S-Bus Telegramms

Schreibe Register 100 mit dem Wert 12345 (Dez) auf Station 10 des S-Bus Netzwerks. Das Telegramm wird wie folgt aussehen:

1.4.3 Network Layer (Netzwerk-Schicht)

Die Bedienung der Network Layers ist äusserst einfach und bedient sich der Multidrop-Möglichkeiten, der in der PCD-Familie verwendeten DUART. Dieser Multidrop-Modus erfordert kein Einfügen eines speziellen Startzeichens bei jedem Telegramm.

Dieser Modus unterstützt zwei verschiedene Zeichentypen, ein Typ für Adressen und ein Typ für Daten. Der Unterschied zwischen beiden besteht darin, dass ein Adress-Zeichen ein auf 1 gesetztes, das Daten-Zeichen ein auf 0 gesetztes Paritätsbit hat.

Ein Telegramm setzt sich aus einem Adress-Zeichen, gefolgt von einer Anzahl Daten-Zeichen, welche für eine bestimmte Slave-Station bestimmt sind, zusammen. Wird ein Adress-Zeichen inmitten eines Datenflusses detektiert, vergleicht die Slave-Station dieses mit ihrer eigenen Adresse um zu entscheiden, ob die Datenzeichen des Telegramms empfangen werden sollen. Slave-Stationen, welche nicht aufgerufen sind, überwachen den Datenfluss auf die nächsten Adress-Zeichen.

Die Adresse 255 (dez) ist der Übertragung von Broadcast-Meldungen vorbehalten. Nach einer solchen Übertragung wird keine Rückmeldung (No response) erwartet. Dieser Betriebsmodus wird "Parity mechanism" (Paritätsmechanismus) genannt.

Weil die meisten Modems, welche das öffentlichen Telefonnetz verwenden, 9-Bit-Zeichen, wie diese für den Paritätsmechanismus verwendet werden, nicht unterstützen und weil viele Modems das Break-Zeichen nicht übertragen können, wird der "Data-Modus" eingesetzt.

1.4.3.1 Der Data-Modus (SM2/SS2)

Im Data-Modus beginnt jedes Telegramm mit einem speziellen FS-Charakter. (FS = frame synchronisazion). Dieser FS-Charakter hat immer den Wert B5 und kommt im Telegramm, ausser beim Telegrammkopf, nicht vor. Als zweiter Charakter wird im Data-Modus eine Telegramminformation übermittelt. Diese Telegramminformationen nennen sich AT-Charakter und können z.B. folgende Informationen beinhalten: Das aktuelle Telegramm ist ein Anfragetelegramm, ein Antwortelegramm etc.

1.4.3.2 Paritätsmodus (SM1/SS1)

Das im sogenannten Multidrop-Modus eingesetzte Paritätsbit gibt den Typ der vorliegenden Zeichen wie folgt an: 1 Address-Zeichen 0 Data-Zeichen

1.4.3.3 Der Break-Modus (SM0/SS0)

Das Break-Zeichen ist ein spezielles Zeichen. Die seriellen Daten sind für alle vollständigen Zeichen, einschliesslich des Stop-Bits, auf logisch Low festgesetzt worden.

S-Bus Telegramm (Prinzip):

Das Break-Zeichen kann von einer PCD-Teilnehmer-Station detektiert werden und gibt den Anfang eines S-Bus Telegramms an. Der S-Bus Driver auf der PCD-Teilnehmer-Station wird immer das Zeichen nach dem Break-Zeichen als Adress-Zeichen interpretieren und die anschliessenden Zeichen als Daten-Zeichen des vorliegenden Telegramms lesen.

1.4.4 Data Link Layer

Der "Upper Sub Layer" (oberer Sub-Layer) steuert die Punkt-Punkt Kommunikation zwischen den einzelnen Stationen im Netzwerk. Geht ein Telegramm verloren oder wird verstümmelt, übernimmt dieses Layer die Neuübermittlung. Die Funktionalitäten dieses Levels sind anhand des folgenden Diagramms ersichtlich.

Beim Erkennen eines verstümmelten Telegramms wird keine Antwort gesendet und der Client wird nach Ablauf der Zeit, welche bis zur dreifachen Dauer des Timeouts dauern kann, durch eine Meldung den oberen Layer informieren, dass ein Übertragungsfehler stattgefunden hat. Die Dauer des Timeouts ist abhängig von der Datenübertragungsrate.

Übermittlung eines Befehltelegrammes

Nachfolgende Skizze zeigt den Verlauf einer erfolgreichen Telegrammübermittlung.

Wenn ein verstümmeltes Telegramm beim Server ankommt und der Client keine Antwort erhält, wird das Telegramm nach Ablauf des Client-Timeouts ein zweites Mal übertragen.

Eine Meldung wird total dreimal übertragen. Nachfolgend ist ein Beispiel mit zwei Versuchen graphisch dargestellt.

Aufruf einer Antwortmeldung (response messages)

Nach Empfang des Lese-Telegrammes wird der Server die Antwort direkt übertragen. Jede auf dem Netzwerk erscheinende Antwort gilt somit dem Client. Aus diesem Grund werden keine speziellen Zeichen für eine Antwort benötigt.

Dieses Beispiel illustriert die erfolgreiche Durchführung eines Lese-Antwort-Telegrammes (read response telegram).

Halb-Duplex Protokoll

In einem Netzwerk kann nur eine Station als Master auftreten. Somit kann nur ein Halb-Duplex Protokoll unterstützt werden, d.h. dass keine Gefahr eines gegenseitigen Sperrens der verschiedenen Stationen besteht.

<u>Unterer Sub_Layer</u> (Lower Sub-Layer)

Die Hauptaufgabe dieses Layers besteht darin, den Fehlererkennungscode CRC-16 zu behandeln. Dieser Typ von Fehlerkontrolle wird verwendet, da dieses Protokoll keine Paritätskontrollen auf den einzelnen Bytes durchführt.

Der Algorithmus für die CRC-16 Fehlererkennung verwendet folgendes Polynom:

 $X^{16} + X^{12} + X^{5} + 1 = 1021$ Hex

Dies entspricht dem CCITT CRC Standard (Referenz CCITT V-41).

1.4.5 Physical Layer

Der S-Bus funktioniert auf allen Typen von Kommunikations-Ports der PCD-Familie.

Der S-Bus wurde hauptsächlich für den Betrieb mit einem RS485 Multidrop Netzwerk eines einzigen Clients und maximal 255 Servern mit S-Bus Repeater vorgesehen.

Der S-Bus kann ebenfalls mit einer RS232 Schnittstelle über Modems eingesetzt werden.

2. Installation

2.1 Punkt-Punkt Verbindung

Grundsätzlich kann jeder Schnittstellentyp im S-Bus-Modus assigniert werden. Da die Installation für den Aufbau einer Punkt-Punkt Verbindung in der Regel keine Probleme verursacht, wird an dieser Stelle nicht näher darauf eingegangen.

Die ausführliche Beschreibung betreffend Pin-Belegung und Daten der verschiedenen Schnittstellen sind den Hardware-Handbüchern der PCD1, PCD2, PCD4 und PCD6 zu entnehmen.

Wird der S-Bus auf einer PCD2 über Port 0 (RS232) in Betrieb genommen, sind einige Vorkehrungen nach der Assignierung der seriellen Schnittstelle zu treffen. (Siehe den Befehl SOCL in Kapitel 3.10)

2.2 S-Bus Netzwerk

Für die Installation eines S-Bus Netzwerkes müssen Module mit einer RS485 Schnittstelle eingesetzt werden.

Module mit RS485 Schnittstelle:

- PCD1.M110 mit Schnittstelle Nr. 1 (RS485)
- PCD1.M120/M130 mit PCD7.F110/F150 Schnittstelle Nr. 1 (RS422/485)
- PCD2.M110/M120 mit Schnittstelle Nr. 0 (RS485) oder mit F-Modulen PCD7.F110/F150 Schnittstelle Nr. 1 (RS422/485) PCD2.F5xx Schnittstelle Nr. 3 (RS422/485)
- PCD2.M220 mit Schnittstelle Nr. 0 (RS485) oder mit F-Modulen PCD7.F110/F150 Schnittstelle Nr. 1 (RS422/485) PCD2.F5xx Schnittstelle Nr. 3 (RS422/485)
- PCD4.C130 Busmodul (Schnittstelle Nr. 1) mit PCD4.M12x, M14x, M240, M340 oder M44x-Prozessormodulen
- PCD4.C340 Busmodul mit PCD7.F110/F150 mit PCD4.M12x, M14x, M240, M340 oder M44x-Prozessormodulen
- PCD6.M540 Single-Prozessormodul (Schnittstelle Nr. 1)
- PCD6.M220 Kommunikations-Prozessormodul (Schnittst. Nr. 0)
- PCD6.M260 Kommunikations-Prozessormodul (Schnittstellen Nr. 0, 1, 2, 3)
- PCD6.M300 Kommunikations-Prozessormodul mit F-Modulen PCD7.F110/F150 (Schnittstellen Nr. 0, 1, 2, 3)

Weitere Auskünfte betreffend diese Module und deren Anschluss an die Systeme sind den entsprechenden PCD Hardware-Handbüchern zu entnehmen. Um auch in einer rauhen und gestörten Industrieumgebung eine fehlerfreie Funktion des RS485-Netzwerkes zu gewährleisten, wird empfohlen, die speziellen Installationskomponenten für RS485-Netzwerke zu verwenden.

Folgende Komponenten stehen zu Verfügung:

Termination box PCD7.T160

Dieses einfachste Modul dient dazu, das Netzwerk korrekt abzuschliessen und die Signalleitungen mit einer galvanisch getrennten Speisung auf das korrekte Ruhepotential vorzuspannen.

Converter PCD7.T120 (RS232/485) und PCD7.T140 (RS422/485)

Die Converter ermöglichen den galvanisch getrennten Übergang von RS232 bzw. RS422 einer Teilnehmer-Station auf den RS485-Bus und umgekehrt.

Repeater PCD7.T100

Mit dem Repeater werden einerseits einzelne Leitungsabschnitte voneinander galvanisch getrennt und andererseits die Übergangsignale für längere Distanzen wieder aufbereitet.

Eine detaillierte Beschreibung dieser Installationskomponenten und allgemein gültige Hinweise für den Aufbau und die Inbetriebnahme eines RS485-Netzwerkes sind dem Handbuch "Installations-Komponenten für RS485-Netzwerke" zu entnehmen.

In der Folge wird in diesem Kapitel die Installation eines S-Bus Netzwerkes ohne Verwendung der speziellen Installationskomponenten beschrieben.

Anschluss und Verlegung der RS485 Bus-Leitung

Um Störungen zu unterdrücken und Reflexionen zu vermeiden, muss die Bus-Leitung jeweils am **Anfang und Ende** mit den Pullup/Pulldownund Abschlusswiderständen versehen werden. Diese Widerstände sind in allen Prozessormodulen bzw. Busmodulen eingebaut und können wahlweise eingeschaltet oder angeschlossen werden.

Werden die in den Prozessoren oder Busmodulen eingebauten Abschlusswiderstände verwendet, müssen die Stationen dauernd eingeschaltet sein, ansonst eine Kommunikation über das Netzwerk nicht möglich ist.

Soll das Netzwerk trotz abgeschalteter Anfangs- und/oder Endstation funktionsfähig sein, müssen die Termination Boxen PCD7.T160 eingesetzt werden.

Folgende Punkte sind speziell zu beachten:

 Beim Anfertigen des Bus-Kabels ist sehr darauf zu achten, dass die Datenleitungen nicht vertauscht werden - also "RX-TX" immer auf "RX-TX" und "/RX-/TX" immer auf "/RX-/TX". Die Bezeichnungen "RX-TX" und "/RX-/TX sind bei Fremdgeräten oft anders bezeichnet:

RX	D	-RX
/RX	/D	+RX
TX	D	-TX
/TX	/D	+TX

- Es ist weiter darauf zu achten, dass die Bus-Leitung auch dann durchgehend verbunden bleibt, wenn ein oder mehrere Stecker ausgezogen werden.
- Die Stichleitungen dürfen eine Länge von 0.5m nicht übersteigen.
- Als Kabel ist Litze von min. 0,5 mm², 2-adrig verdrillt und abgeschirmt einzusetzen.

Signalpegel der RS485 Schnittstellen

Signaltyp	Logischer Zustand	Polarität
Datensignal	0 (space) 1 (mark)	RX-TX positiv zu /RX-/TX /RX-/TX positiv zu RX-TX

- *) abhängig von den "Pull up"-, "Termination"- und "Pulldown"-Widerständen.

Erdung einer RS485 Bus-Leitung

Beide Enden der Kabelabschirmung sind immer an eine zuverlässige Erdleitung anzuschliessen. So können Potentialdifferenzen minimal gehalten werden.

Es wird empfohlen, das RS485 Kabel nicht in unmittelbarer Nähe von Starkstromkabeln (Motoren) zu verlegen, ansonsten störende Interferenzen auftreten können, es sei denn, die Motorenkabel seinen abgeschirmt.

3. Datentransfer Service

3.1 Funktionsprinzip und Anwendung

Der Anwendungslevel 1 (Reduced Protocol) ermöglicht den Austausch von PCD-Daten über das S-Bus Netzwerk oder über eine Punkt-Punkt Verbindung.

Als Master-Station kann eine PCD1, PCD2, PCD4, PCD6 oder ein beliebiges Fremdsystem (z.B. ein Prozessleitsystem wie WIZON, Factory-Link etc.), welches über einen Treiber für das S-Bus Protokoll verfügt, eingesetzt werden.

Der gesamte Datenverkehr wird von der Master-Station gesteuert. Mit dem Anwenderprogramm in der Master-Station wird definiert, welche Daten von einer angeschlossenen Slave-Station gelesen oder geschrieben werden sollen. Die Slave-Station verhält sich dabei aus der Sicht des Anwenders passiv. Die Kommunikation wird durch die Firmware von der CPU im Hintergrund automatisch abgewickelt. Mit dem Anwenderprogramm wird für die Slave-Station nur die Schnittstelle initialisiert.

Die Schnittstellen der PCD werden für die Master-Station im SM2, SM1oder SM0-Modus (S-Bus Master) und für die Slavestation im SS2, SS1oder SS0-Modus (S-Bus Slave) assigniert.

Definition der Stationsnummer

Jeder Slavestation ist eine Nummer zugeordnet, welche ein Adressieren von der Masterstation aus ermöglicht. Diese Nummer wird im "Header" des Anwenderprogramms des Speichermoduls der Slavestation abgespeichert.

Die Stationssnummer wird, abhängig von den verwendeten Speichermodulen, unterschiedlich abgespeichert.

Der Hauptunterschied besteht darin, dass bei Verwendung von RAM Speichermodulen die Nummer der Slavestation online in der PCD abgespeichert wird.

Wird dagegen ein EPROM Speichermodul verwendet, so erfolgt die Definition der Slave Nummer offline, d.h. ein EPROM wird mit der Slave-Nummer und dem Anwenderprogramm programmiert und später in die PCD eingesetzt.

Definition der Stationsnummer bei Verwendung von Speichermodulen mit RAM-Bausteinen

- 1. Programmiereinheit an die Programmierschnittstelle "PGU" der PCD anschliessen.
- 2. Starten des PG4 Project Managers.

🖉 Manual1 - SAIA Project Manager 📃	
Elle View Besource Broject Online Icols Help	
Current Working Directory. c:\program files\saia-burgess\pg4\projects\manual1	
Files in project: Manual1	
Stall EppLyNot Inked] dmf.hup [FBD] modm_not.hup [FBD]Not linked] modm_ret.hup [FBD]Not linked] sms_fup [FBD]Not linked] sms_text.sro [ILVNot linked] sms_text.sro [ILVNot linked]	
Ready REMAKE OFFLINE	- 10

3. Anwählen des "Online Configurator" Knopfes in der Toolbar Liste.

Danach ist der Online Configurator sichtbar:

📈 SAIA PCD Online Configurator 📃 🗔 🔀			
<u>File O</u> nline <u>S</u> etti	ngs <u>H</u> elp		
Memory S- <u>B</u> US Clock History Password	PCD Type: PCD2.M1_Version: 007Program Name:DATA_BUFDate:25/6/99Day: 5Time:15:49:05Week: 25Status:Stop at 0CPU:0Baud: 9600Station:0Protocol: PGU (P800)	<u>G</u> o Offline Op <u>t</u> ions Ope <u>n</u> File <u>H</u> elp E <u>x</u> it	

4. Aktivieren der Schaltfläche 'S-Bus':

S-BUS Configuration		X
S-BUS	<u>s</u> -8US	OK Cancel
Gateway Las Gateway Port	<u>G</u> ateway	
Public Line Modem		
Modem Name:	<u>M</u> odem	
	7	<u>H</u> elp

5. Wahl von 'S-Bus Support' und Betätigen der Schaltfläche 'S-Bus':

S-BUS Configuration		×
S-BUS	<u>S</u> -BUS	Cancel

6. Eingabe der gewünschten Stationsnummer:

PCD2 S-BUS Configuration	X
S-BUS <u>S</u> tation Number: 10	OK
PGU <u>P</u> ort Number: None	Cancel
PGU Port Baud Rate: 9600	
S-B <u>U</u> S Mode: Parity (S1)	
Port 0 Type: RS-232	
S-BUS Timing	
Training Sequence <u>D</u> elay (TS): 0 ms	
<u>I</u> urnaround Delay (TN): 0 ms	
<u>R</u> esponse Timeout: 0 ms	Help

Alle anderen Parameter sind auf dem S-Bus Level 1 nicht relevant, wenn weder Modem noch Repeater verwendet werden. Verlassen des Eingabefensters durch betätigen der OK-Taste. Das nachfolgende Fenster muss ebenfalls durch Betätigung der OK-Taste verlassen werden. Die nachfolgende Warnung kann mittels der YES-Taste bestätigt werden.

Dadurch wird die eingestellte Konfiguration in die Steuerung geladen.

Die zugewiesene Nummer kann im Fenster "Online Configurator" eingesehen werden.

📈 SAIA PCD Or	_ 🗆 ×	
<u>File O</u> nline <u>S</u> ett	tings <u>H</u> elp	
Memory S-BUS Clock History Password	PCD Type: PCD2.M1_Version: 007Program Name: DATA_BUFDate:28/6/99Date:28/5/99Time:9:56:59Week:26Status:RunCPU:0Baud:9600Station:10Protocol:PGU (P800)	<u>G</u> o Offline Op <u>t</u> ions Ope <u>n</u> File <u>H</u> elp E <u>x</u> it

Definition der Stationsnummer bei Verwendung von EPROM-Speichermodulen

- 1. Starten des PG4 Project Managers.
- 2. Anwählen des "Offine Configurator" Knopfes in der Toolbar Liste.

Danach ist der Offline Configurator sichtbar:

Kanual1 - SAIA PCD Configuration Fi	le Editor 📃 🖂 🗙
Description:	Options
	Manual Memory Allocation
PCD Type: Number of CPUs: PCD2 1	S- <u>B</u> US Support 🔲 5:BUS
Code/Text Memory Size:	Has Galeway Port 🔳 <u>Galeway</u>
128K Bytes, RAM/EPROM	Publis Line Modem 🔲 Modem
Egtension Memory Size: EPROM Size: 24K Bytes	Password Protection
Program Names	Help

3. Wahl von 'S-Bus Support' und Betätigen der Schaltfläche 'S-Bus':

📢 Manual1 - SAIA PCD Configuration Fi	le Editor	
Eile Online Help		
Description	Options	
I	Manual Memory Allocation	Memory
PCD Type: Number of CPUs:	S-BUS Support	S'BUS
	11. C. L. D. L	- County 1

PCD2 S-BUS Configuration	×
S-BUS <u>S</u> tation number: 10	ОК
PGU Port number: None	Cancel
PGU port <u>B</u> aud rate: 9600	
S-B <u>U</u> S mode: Parity (S1)	
Port 0 type: RS-232	
S-BUS Timing	
Training sequence <u>D</u> elay (TS): 0 ms	
Iurnaround delay (TN): 0 ms	
<u>R</u> esponse timeout: 0 ms	Help

4. Eingabe der S-Bus Stationsnummer:

Verlassen des Eingabefensters durch betätigen der OK-Taste. Danach kann auch das Eingabefenster vom "SAIA PCD Configurator File Editor" verlassen werden.

Die zuvor eingegebenen Parameter werden dadurch in einer speziellen Datei abgespeichert.

Die Angaben, welche in dieser Datei gespeichert sind, werden bei der Programmierung des EPROMS auf diesem abgespeichert.

Die Stationsnummer gilt immer für die ganze PCD-Station, selbst wenn mehrere Schnittstellen der gleichen Station im S-Bus-Modus assigniert sind.

3.2 PCD-Befehle für den S-Bus

SASI SASII	Assign serial interface Assigniere die serielle Schnittstelle	Master und Slave
SRXM SRXMI	Serial receive media Empfange Daten oder Status von einer Slavestation	Nur Master
STXM STXMI	Serial transmit media Sende Daten zu einer Slavestation	Nur Master
SICL	Serial input control line Lesestatus einer Steuerleitung	Master und Slave
SOCL	Serial output control line Setze Signal einer Steuerleitung	Master und Slave
SYSRD	Systemdaten Lesen	Master und Slave
SYSWR	Systemdaten Schreiben	Master und Slave

Folgende Befehle werden vom S-Bus Modus unterstützt:

Bevor eine Kommunikation über eine serielle Schnittstelle mit dem S-Bus Protokoll (Anwenderlevel 1) stattfinden kann, müssen die PCD-Schnittstellen von Master und Slave unter Verwendung der SASI-Befehle entsprechend SM2, SM1- oder SM0-Modus respektive SS2, SS1- oder SS0-Modus assigniert werden.

3.3 SASI - Assignierung der seriellen Schnittstelle

Beschreibung:

Initialisierung einer seriellen Schnittstelle.

Der Befehl ist zweizeilig:

In der ersten Zeile wird die Kanalnummer angegeben. In der zweiten Zeile wird die Nummer eines Textes angegeben, in welchem die Schnittstellenparameter definiert sind.

Jede verwendete Schnittstelle muss einmal initialisiert werden (meistens im XOB 16).

Format:

SASI	Kanal	; Serielle Kanalnummer 03
	Textnummer	; Definitionstext-Nummer 03999, 40007999

Textnummer:	03999	im Standardspeicher
	40007999	im Erweiterungsspeicher
Deigniele		
Beispiel:		
SASI	1	; Initialisiere Kanal 1
	999	; Schnittstellendefinitionen in Text 999

Flags:

Das Error (E)-Flag wird gesetzt, falls der Definitionstext fehlt oder ungültig ist, die Stationsnummer nicht definiert ist oder die Schnittstelle bereits als S-Bus PGU konfiguriert wurde.
SASI Definitionstext

Der SASI-Befehl benützt einen speziellen Definitionstext zur Initialisierung der seriellen Schnittstelle.

Format:

TEXT xxxx	" <uart_def>;"</uart_def>	
	" <mode_def>;"</mode_def>	
	" <diag_def>;"</diag_def>	

wobei xxxx für eine gültige Textnummer von 0...3999 im Standardspeicher oder 4000...7999 im Erweiterungsspeicher steht.

Der gesamte Text kann auch in einer einzigen Zeile geschrieben werden.

Bedeutung der verschiedenen Textparameter:

- <UART_DEF> Definiert die Baudrate, Timeout, TS-Delay, TN-Delay und Break-Länge.
- <MODE_DEF> Definiert den Kommunikationsmodus (SM2/SS2, SM1/SS1 resp. SM0/SS0) und das Register für die Nummer der aufzurufenden Slave-Station.
- <DIAG_DEF> Adressen der Diagnose-Flags und des Diagnose-Registers.

Beispiel:

Definitionstext zur Initialisierung der Schnittstelle einer Slave-Station mit 9600 Baud, Diagnose-Flag auf Adresse 2000 bis 2007 und das Diagnose-Register auf Adresse 1500.

\$SASI TEXT 100 "UART:9600;" "MODE:SS1;" "DIAG:F2000,R1500;"

\$ENDSASI

Wichtig:

Falls die SASI-Texte nicht zwischen den Assemblerdirektiven \$SASI und \$ENDSASI stehen, dürfen nur Grossbuchstaben verwendet werden.

<UART_DEF>

Definiert die Baudrate, Timeout, TS-Delay und TN-Delay. Die Definition von Zeichenlänge, Parität und Stopbit ist nicht erforderlich, da beim S-Bus Protokoll folgende Definitionen fest eingestellt sind:

Zeichenlänge	8 Bit	
Stopbit:	1	
Paritätsbit:	SM2/SS2-Modus	Data-Modus
	SM1/SS1-Modus	Paritätsbit "1" bei Adresse-Zeichen
		Paritätsbit "0" bei Daten-Zeichen
	SM0/SS0-Modus	mit Break-Charakter

Format:

Baudrate		[Timeout]		[TS-Delay]	[TN-D	elay]	[Break-
	einstellbar	oder Stand	arwert		einstellbar	Standard-	Length]
		Parity + Break	Data-Mode		oder	wert	einstellbar
110		15000 ms	15000 ms			27 ms	
150		9000 ms	15000 ms			20 ms	
300		5000 ms	7500 ms			20 ms	
600		3000 ms	4500 ms			5 ms	
1200	115000	2000 ms	3000 ms	115000	115000	3 ms	425
2400	ms	1000 ms	1500 ms	ms	ms	2 ms	Zeichen
4800		500 ms	750 ms			2 ms	
9600		250 ms	375 ms			1 ms	
19200		200 ms	300 ms			1 ms	
38400		200 ms	300 ms			1 ms	

Timeout, TS-Delay und TN-Delay sind optional und kommen im allgemeinen nur beim Einsatz von Modems zur Anwendung.

Definitionen müssen sowohl in der Master- als auch in der Slavestation durchgeführt werden.

Werden keine Parameter definiert, so gelten die Standardwerte aus obenstehender Tabelle.

Standardwert für TS-Delay = 0 ms. Standardwert für Break-Length = 4 Zeichen (nur im SM0-Modus).

Für die genaue Bedeutung und Bestimmung der Werte für TS-Delay und TN-Delay siehe Abschnitt 3.13.1 "Multipunkt-Modems und Converter".

Baudrate:

Baudraten bis zu 19.2 kBaud werden unabhängig vom Schnittstellentyp, der Hardware- und Firmware-Version von allen PCD-Modulen unterstützt. (Ausnahme: 20mA Current loop nur bis 9600 Baud),

Die Baudrate 38,4 KBaud wird auf den alten PCD-Hardwareversionen nicht unterstützt (siehe auch Anhang A).

Bei der Assignierung einer Schnittstelle für 38.4 KBaud ist zudem zu beachten, dass für die Assignierung der zweiten DUART-Schnittstelle einige Baudraten aus physikalischen Gründen nicht mehr möglich sind.

Für die Schnittstellen 0 + 1 (DUART 1) respektive 2 + 3 (DUART 2) sind folgende Kombinationen der Baudraten nicht möglich:

38.4 KBaud	+	38.4 KBaud
38.4 KBaud	+	19.2 KBaud
38.4 KBaud	+	150 Baud
38.4 KBaud	+	110 Baud
	38.4 KBaud 38.4 KBaud 38.4 KBaud 38.4 KBaud	38.4 KBaud + 38.4 KBaud + 38.4 KBaud + 38.4 KBaud +

Wird trotzdem versucht, eine nicht erlaubte Kombination zu assignieren, so wird das Error-Flag gesetzt und der XOB 13 aufgerufen.

Belastung der CPU bei Kommunikation mit 38.4 KBaud:

Da für die S-Bus-Kommunikation kein separater Kommunikationsprozessor verwendet wird, beansprucht eine Kommunikation mit 38.4 KBaud entsprechend mehr CPU-Kapazität.

Bei grossem Datenverkehr wird dadurch bis zu 40% der CPU-Kapazität benötigt. Das wiederum bedeutet, dass das Anwenderprogramm um diesen Faktor langsamer arbeiten wird.

Timeout:

Dieser Wert definiert die maximale Zeit nach einem gesendeten Lese-Telegramm (Instruktion SRXM), während welcher das Antwort-Telegramm von der angesprochenen Partnerstation empfangen werden muss.

Wird innerhalb dieser Zeit keine gültige Antwort empfangen, so wird das zuletzt gesendete Telegramm wiederholt und die Diagnose-Elemente entsprechend gesetzt. Ein Telegramm wird maximal zweimal wiederholt.

Break-Length:

Mit dem Parameter kann im SMO-Modus die Länge des Breaksignals angepasst werden. Dieses wird zur Unterscheidung zwischen Daten- und Adress-Zeichen verwendet. Ein Adress-Zeichen wird mit einem vorangestellten Breaksignal angekündigt. Ein Breaksignal wird nur von der Master-Station im SMO-Modus gesendet und kann somit auch nur bei dieser angepasst werden.

Eine Anpassung der Breaklänge ist in der Regel nicht notwendig.

Breaksignal: Datenleitung = L, für die Übertragungsdauer von n Zeichen incl. Stopbit.

Aufbau eines S-Bus Telegrammes mit Breaksignal:

Wird die Breaklänge im SM2-, SS2, im SM1-, SS1- oder im SS0-Modus definiert, so wird bei der Assignierung der Schnittstelle das Error-Flag gesetzt und der XOB 13 aufgerufen.

Beispiel:

für einen UART Definitionstext: "UART:4800;"

Die Schnittstelle ist mit 4800 Baud initialisiert.

Für Standardanwendungen werden weder Timeout, noch TS-Delay, noch TN-Delay oder Break-Length definiert.

<MODE_DEF>

Definiert den Kommunikationsmodus und ein Register für die Stationsnummer.

<sbus_mode></sbus_mode>	Beschreibung
SM2	S-Bus Master, Data Mode
SM1	S-Bus Master, mit Steuerung des Paritätsbits
SM0	S-Bus Master, mit Break-Zeichen
SS2	S-Bus Slave, Data Mode
SS1	S-Bus Slave, mit Steuerung des Paritätsbits
SSO	S-Bus Slave, mit Break-Zeichen
GS2	S-Bus Gateway, Data Mode
GS1	S-Bus Gateway Slave, mit Steuerung des Paritätsbits
GS0	S-Bus Gateway Slave, mit Break-Zeichen
GM	S-Bus Gateway Master
OFF	Entinitialisiert die serielle Leitung

Format:	"MODE: <sbus_< th=""><th>_mode>[,<dest_< th=""><th>_reg>];"</th></dest_<></th></sbus_<>	_mode>[, <dest_< th=""><th>_reg>];"</th></dest_<>	_reg>];"
---------	---	--	----------

SM2/SS2-Modus:

Ein Telegramm beginnt immer mit einem eindeutigen Zeichen (FS-Zeichen).

Vorteil:	Einfaches Erkennenen eines Telegrammanfangs. Braucht keine Break- und Parity-Zeichen. Dadurch kann bei Mo- demkommunikation jedes Modem verwendet werden.
Nachteil:	Da das FS-Zeichen im Telegramm nicht vorkommen darf, muss dieses, falls vorhanden, ersetzt werden. Dadurch kann die Telegrammlänge erhöht werden.

SM1/SS1-Modus:

Das Paritätsbit wird zur Unterscheidung von Adresse- oder Daten-Zeichen verwendet.

Vorteil:	Sehr schnelle und effiziente Adressierung der Slave- Stationen dank Verwendung des Paritätsbit.
Nachteil:	Bei Modemkommunikation müssen Modemtypen, wel- che 9 Datenbit (8 Daten und 1 Paritätsbit) unterstützen, verwendet werden.

SM0/SS0-Modus:

Ein Adress-Zeichen wird mit einem vorangestellten Breaksignal angekündigt. (Datenleitung = L für die Dauer von mindestens vier Zeichen inklusive Stoppbit)

Vorteil:	Bei Modemkommunikation können Standard- Modemtypen, welche 8 Datenbit unterstützen und den Break-Charakter übertragen, verwendet werden.
Nachteil:	Zeitintensivere Adressierung der Slave-Stationen wegen vorangestelltem Breaksignal.

GS2/GS1/GS0/GM-Modus:

Siehe Kapitel 6: S-Bus Gateway.

OFF-Modus:

Dieser Modus wird verwendet, um eine initialisierte Schnittstelle zu entinitialisieren (um z.B. den Modus zu ändern).

Beispiel: "MODE:OFF"

Um mehr über die Verwendung des S-Bus Level 2 zu erfahren, siehe **UNDO/REDO ein S-Bus PGU Port** (SASI OFF), Kapitel 5.4.3.

<dest_reg></dest_reg>	Beschreibung
R xxxx	Register für Partner-Stationsnummer

Stationsnummer:0..254255für Broadcast-Telegramme reserviert

Das Register für die Partner-Stationsnummer wird nur bei der Master-Station definiert.

Beispiele:

Definitionstext für Master-Station.

"MODE:SM1,R350;"

Für die Stationsnummer wird Register 350 verwendet:

Definitionstext für Slave-Station .:

"MODE:SS1;"

Broadcast-Telegramme:

Mit Stationsadresse 255 können Broadcast-Telegramme gesendet werden. Broadcast-Telegramme werden von allen Slave-Stationen am Bus empfangen und verarbeitet.

Auf ein Broadcast-Telegramm wird von der Slave-Station keine Antwort oder Quittung gesendet. Das wiederum bedeutet, dass nur Schreibtelegramme (STXM-Befehle) im Broadcast-Modus gesendet werden können.

Bei der Abarbeitung eines SRXM-Befehls mit Broadcastadresse wird das Error-Flag gesetzt.

Beispiel:	Die Uhren aller Slave-Stationen werden von der Master-
	Station via S-Bus synchronisiert.

LD	R	350	; Register mit Stationsadresse
		255	; für Broadcast
STXM		1	; Schnittstelle 1
		0	; Spezial Code, um die Uhr einer
	R	150	; Slave-Station mit dem Inhalt der
	Κ	1000	; Register 150 und 151 schreiben

<DIAG_DEF>

Definiert die Diagnose-Elemente für die S-Bus-Kommunikation.

Format:

"DIAG: <diag_elem>,<diag_reg>;"

	Тур	Beschreibung
<diag_elem></diag_elem>	F xxxx	Basisadresse von 8 aufeinanderfol-
	O xxxx	genden Flags oder Ausgängen
<diag_reg></diag_reg>	R xxxx	Adresse des Diagnose-Registers

Beispiel:

"DIAG:F3900,R120;"

Diagnose-Flags

Adresse	Name	Beschreibung
XXXX	RBSY	Receiver busy
		Empfänger beschäftigt
xxxx + 1	RFUL	Receive buffer full
		Empfangsbuffer voll
xxxx + 2	RDIA	Receiver diagnostic
		Empfänger-Diagnose
xxxx + 3	TBSY	Transmitter busy
		Sender beschäftigt
xxxx + 4		Not used
		Nicht benützt
xxxx + 5	TDIA	Transmitter diagnostic
		Sender-Diagnose
xxxx + 6	XBSY	SASI permission
		SASI Erlaubnis
xxxx + 7	NEXE	Not executed
		Nicht ausgeführt

Receiver Busy (RBSY) wird = H gesetzt, wenn eine Slave-Station ein Telegramm empfängt. Das Flag wird zurückgesetzt, sobald das Antwort-Telegramm gesendet wurde. Das Flag hat keine Bedeutung bei der Master-Station.

Receive Buffer Full (RFUL) wird = H gesetzt, wenn durch die Master-Station Elemente in der Slave-Station verändert wurden. **Receiver Diagnostic (RDIA)** wird = H gesetzt, wenn während dem Empfang eines Telegrammes ein Fehler festgestellt wird. Die detaillierte Beschreibung des Fehlers kann dem Diagnose-Register (Bit 0..15) entnommen werden. Das Flag wird zurückgesetzt, sobald im Diagnose-Register alle Empfänger-Diagnose-Bits (0..15) zurückgesetzt sind.

Transmitter Busy (TBSY) ist = H, solange eine Übertragung stattfindet.

Bedeutung für die

Master-Station:	Wird bei der Ausführung eines STXM- oder SRXM-Befehls = H gesetzt. Das Flag wird zu- rückgesetzt, sobald eine gültige Antwort empfan- gen wird.
Slave-Station:	Ist = H, solange die Antwort gesendet wird.

Transmitter Diagnostic (TDIA) wird = H gesetzt, wenn während dem Senden eines Telegrammes ein Fehler festgestellt wird. Die detaillierte Beschreibung des Fehlers kann dem Diagnose-Register (Bit 16..31) entnommen werden. Das Flag wird zurückgesetzt, sobald im Diagnose-Register alle Sender-Diagnose-Bits (16..31) zurückgesetzt sind.

Interface busy (XBSY) ist = L, wenn der Anwender die Erlaubnis hat, einen SASI OFF durchzuführen, um den S-Bus PGU für das am öffentlichen Telefonnetz angeschlossene Modem rückgängig zu machen. Um mehr über diese Anwendung zu vernehmen, siehe **UNDO/REDO ein S-Bus PGU Port** (SASI OFF), Kapitel 5.4.3.

Not Executed (NEXE) wird = H gesetzt, wenn ein Befehl (STXM oder SRXM) nach dreimaligem Versuch nicht ausgeführt werden konnte. Das Flag wird beim nächsten Befehl wieder zurückgesetzt.

DIAGNOSE-REGISTER

	Bit	Bezeichnung	Beschreibung
	0	Overrun error	Überlauf des internen Empfangsbuffers
	1		
	2	Framing error	Wahrscheinlich falsche Baudrate
Е	3	Break error	Datenleitung unterbrochen *)
Μ	4	BCC error	Fehler im Telegramm BCC oder CRC-16
Р	5	S-Bus PGU status	S-Bus PGU mit Public-Line Modem
F	6	SASI OFF permission	SASI OFF Erlaubnis
Ä	7		
Ν	8	Length error	Unkorrekte Telegrammlänge
G	9		
Е	10	Address error	Adresse der Rückantwort ungültig
R	11	Status error	PCD in falschem Status.
			Kann den Befehl nicht ausführen
	12	Range error	Ungültige Elementbereich
	13	Value error	Ungültiger Datenwert
	14	Missing media error	Medienadresse fehlt oder falsch
	15	Program error	Stationsnummer nicht zugewiesen
	16	Retry count	Anzahl Telegrammwiederholungen
	17		(in binärer Darstellung)
	18		
	19		
	20	NAK response	Negative Antwort (NAK)
S	21	Missing response	Keine Antwort nach Timeout
Е	22	Multiple NAK	NAK nach mehreren Versuchen
Ν	23	CTS-Timeout	Kein CTS nach TS-Delay
D	24		
Е	25		
R	26		
	27		
	28	Range error	Ungültige Element-Adresse
	29		
	30		
	31	Program error	Unerlaubter Sendeversuch

Ein = H gesetztes Bit im Diagnose-Register bleibt solange gesetzt, bis dieses via Anwenderprogramm oder Debugger manuell wieder zurückgesetzt wird.

*) keine Bedeutung im SM0/SS0-Modus

Overrun Error (Bit 0) wird bei einem Überlauf des internen Buffers vom DUART = H gesetzt.

Ursache: zu hohe Baudrate assigniert.

 \rightarrow Die CPU kann nicht mehr alle empfangenen Zeichen verarbeiten.

Dies kann passieren, wenn eine CPU mit einer Kommunikation mit sehr grossem Datenverkehr auf mehreren Schnittstellen gleichzeitig beschäftigt ist. Theoretisch können zwar alle Schnittstellen (20mA Current Loop ausgenommen) einer CPU gleichzeitig mit der maximalen Baudrate von 19'200 Baud assigniert werden, praktisch kann dieser Fehler bei sehr grossem Datenverkehr auf mehreren Schnittstellen dennoch auftreten. Vom Systemprogramm werden die Schnittstellen mit unterschiedlicher Priorität behandelt. Die höchste Priorität erhält die Schnittstelle 0, dann werden die weiteren Prioritäten abnehmend bis Schnittstelle 3 zugewiesen.

Massnahme: - Baudrate reduzieren

- Für schnelle Kommunikation nach Möglichkeit eine Schnittstelle mit hoher Priorität verwenden.

Framing Error (Bit 2) wird beim Empfang eines Zeichens mit Format-Fehler = H gesetzt (fehlendes Stopbit). Wird meistens durch eine falsch eingestellte Baudrate verursacht.

Break Error (Bit 3) wird = H gesetzt, wenn während dem Empfang eines Zeichens ein Unterbruch festgestellt wird.

Ursache: unterbrochene Datenleitung oder falsch eingestellte Baudrate

BCC oder CRC-16 Error (Bit 4) wird = H gesetzt, wenn im empfangenen Telegramm ein CRC-16 Fehler festgestellt wurde.

Reaktion	Slave:	Das empfangene Telegramm wird verwor- fen.
	Master:	Das empfangene Telegramm wird verwor- fen und das zuvor gesendete Telegramm nochmal gesendet.

Ursache: Störungen auf der Datenleitung.

Massnahme: Elektrische Installation überprüfen.

S-Bus PGU PLM (Bit 5) zeigt die aktive S-Bus PGU Schnittstelle mit einem Public Line Modem

- "1" S-Bus Port ist im STANDBY Status , und wartet auf die Verbindung mit dem Modem.
- "0" S-Bus PGU-PLM Port ist nicht konfiguriert oder im FINAL Status (PCD bereit in S-Bus-Modus Level 2 für Modem oder S-Bus PGU-PLM noch nicht aktiviert).

SASI OFF permission (Bit 6) gibt an, dass jemand einen UNDO/REDO Prozess auf dem S-Bus PGU-PLM desaktiviert hat, indem ein RUN oder STOP via S-Bus oder PG4/PG3 Utilities während der SASI OFF Ausführung der Delay-Zeit durchgeführt worden ist.

Length Error (Bit 8) wird = H gesetzt, wenn ein Telegramm mit ungültiger Länge empfangen wird. Dieser Fehler kann in einem Netzwerk mit nur PCD-Stationen nicht auftreten. Der Fehler zeigt an, dass ein ungültiges Telegramm von einem Fremdsystem empfangen wurde. In diesem Fall wird mit einem NAK geantwortet.

Telegram Error (Bit 10) wird = H gesetzt, wenn ein ungültiges Telegramm empfangen wird (falscher Befehls-Code).

Ursache: gleich wie bei Length Error (es wird kein NAK gesendet).

Status Error (Bit 11) wird = H gesetzt, wenn die PCD einen Abfragebefehl nicht ausführen kann, weil die Slave-PCD nicht den korrekten Status aufweist (Run/Halt/Stop/Disconnected/...). Wird nur für S-Bus Level 2 verwendet.

Range Error (Bit 12) wird = H gesetzt, wenn ein empfangenes Telegramm eine ungültige PCD-Elementadresse enthält. Dieser Fehler kann in einem Netzwerk wo nur PCD-Stationen vorhanden sind nicht auftreten, da die Master-PCD schon beim Senden eines Telegrammes den Element-Adressbereich überwacht. Bei diesem Fehler antwortet die Slave-Station mit einem NAK. **Value Error (Bit 13)** wird = H gesetzt, wenn ein ungültiger Datenwert empfangen wird.

Beispiel: mit dem Befehl STXM wird versucht die Uhr zu schreiben. Dabei wird für die Stunde z.B. der Wert 30 empfangen. Der maximale Bereich für die Stunde beträgt jedoch nur 0..23.

Bei diesem Fehler antwortet die Slave-Station mit einem NAK.

Missing media error (Bit 14) wird = H gesetzt, wenn die Media-Adresse nicht definiert oder der Media-Code für die vorliegende Anfrage ungültig ist. Wird nur für S-Bus Level 2 verwendet.

Program Error (Bit 15) wird bei der Ausführung eines SASI-Befehls mit der Definition "SS1-Modus" = H gesetzt, wenn der Header des Anwenderprogrammes für die S-Bus Slave-Station nicht oder ungültig konfiguriert wurde.

Siehe dazu auch Kapitel 3.1 "Definition der Stationsnummer".

Retry Count (Bits 16 und 17) zeigen die Anzahl Telegrammwiederholungen bei der Ausführung eines SRXM- oder STXM-Befehls in binärer Darstellung. Wobei Bit 16 das LS-Bit ist. Die Qualität eines S-Bus Netzwerkes kann durch Überwachen dieser zwei Bits beurteilt werden.

Negative Response (Bit 20) wird = H gesetzt, wenn von einem Slave ein NAK als Antwort empfangen wird. Das bedeutet, dass der Master zuvor ein ungültiges Telegramm gesendet hat. Vergleiche dazu folgende Fehler: Value Error, Range Error und Length Error. **Missing Response (Bit 21)** wird = H gesetzt, wenn von der Slave-Station nach Ablauf des Timeouts keine Antwort empfangen wurde. In diesem Fall wird das zuvor gesendete Telegramm wiederholt (maximal zweimal).

Mögliche Ursachen:

- Die adressierte Slave-Station existiert nicht.
- Installationsfehler (Verdrahtung) im Netzwerk.
- Die Slave-Station hat ein gestörtes Telegramm mit einem CRC-16 Fehler empfangen.

Massnahmen:

- Überprüfung der Slave-Station (Anschlüsse, Stationsnummer).
- Sind an der Bus-Leitung bei der Anfangs- und Endstation die korrekten Abschluss- und Pull-Up/Down Widerstände ange- schlossen?

Invalid Response (Bit 22) wird = H gesetzt, wenn von einer Slave-Station an Stelle des erwarteten ACK oder NAK eine andere Antwort empfangen wurde.

Mögliche Ursachen:

- Mehrere Slaves mit gleicher Stationsnummer
- Mehrere Master im Netz
- Störungen auf der Busleitung

Massnahmen:

• wie bei Fehler Missing Response

CTS Timeout (Bit 23) wird = H gesetzt, wenn zwischen dem Setzen der Steuerleitung RTS (durch die PCD) und dem Empfangen von CTS (vom Modem) die Zeit "TS-Delay" überschritten wird. Vergleiche dazu auch Kapitel 3.13.

Range Error (**Bit 28**) wird = H gesetzt, wenn mit den Befehlen SRXM oder STXM eine Elementadresse (Quell- oder Zieladresse) angegeben wird, welche ausserhalb des erlaubten Bereiches liegt.

Ursache:	Fehler im Anwenderprogramm		
Überwachte	Bereiche:		
	Ein-/Ausgänge	08191	
	Flag	08191	
	Timer/Counter	01599	
	Register	04095	
	-		

Beispiel: bei der Ausführung des folgenden STXM-Befehls wird das Range Error-Bit 0 H gesetzt.

STXM		1	; Kanal 1
		25	; 25 Register
	R	1000	; Quell-Basisadresse
	R	4072	; Ziel-Basisadresse

Es wird versucht von der Master-Station die Inhalte der Register 1000 bis 1024 zur Slave-Station auf die Register 4072 bis 4096 zu übertragen. (4095 ist die höchste Registeradresse).

Program Error (Bit 31) wird bei der Ausführung eines STXM- oder SRXM-Befehls = H gesetzt, wenn die Schnittstelle im SS1-Modus assigniert wurde oder wenn bereits ein solcher Befehl bearbeitet wird. (TBSY-Flag wurde vor der Ausführung des Befehls nicht abgefragt). Notizen

3.4 SRXM - Empfange Daten von einer Slave-Station

Beschreibung:

Der Befehl liest Daten oder den Status einer Slave-Station. Die Stationsnummer des Slaves muss vor der Ausführung des Befehls in das mit dem SASI-Befehl definierte Register geladen werden.

Der Befehl kann nur bei der Master-PCD angewendet werden.

Während der Bearbeitung des Befehls wird das TBSY-Flag = H gesetzt. Das Flag wird zurückgesetzt, wenn der Datentransfer beendet ist. Das TBSY-Flag muss deshalb vor der Ausführung jeder SRXM-Instruktion auf den Zustand "L" abgefragt werden.

Der Befehl setzt sich aus vier Zeilen zusammen:

- Der erste Operand ist die Kanal-Nummer.
- Der zweite Operand definiert die Anzahl der zu empfangenden Elemente.
- Der dritte Operand definiert die Basisadresse (tiefste Adresse) der Quellelemente in der Slave-PCD.
- Der vierte Operand definiert die Basisadresse (tiefste Adresse) der Zielelemente in der Master-PCD.

Format:

SRXM[X]	Kanal Anzahl Quelle (i) Ziel (i)	; Kanal-Nummer ; Anzahl der zu empfangenden Elemente ; Basisadresse der Quellelemente (Slave-PCD ; Basisadresse der Zielelemente (Master-PCI		
Kanal: Anzahl:	03 132 1128 0 R nnnn	Nummer o zu lesende zu lesende Code für s zum Trans	der verwendeten Schnittstelle e Anzahl R/T/C *) e Anzahl I/O/F spezielle Funktionen sfer von Daten-Blöcken verwendet	
Quelle:	I/O/F R T/C DB K	08191 04095 01599 07999 06000	Basisadresse der Elemente in der Slave-PCD Code für spezielle Funktionen	
Ziel:	I/O/F R T/C DB	08191 04095 01599 07999	Basisadresse der Elemente in der Master-PCD	

*) bei älteren PCD-Firmware kann die Anzahl R/T/C auf 31 begrenzt sein.

Master-PCD (Ziel) F С T DB 0 R Ι • • 0 • • F **Slave-PCD** • • R (Quelle) • • • • С ٠ • ٠ ٠ Т ٠ ٠ ٠ ٠ K • DB • • •

Aus nachfolgender Tabelle ist ersichtlich, welche Elemente von der Quellstation auf welche Elemente in der Zielstation kopiert werden können.

Flags:

Das Error-Flag wird gesetzt wenn:

Die Schnittstelle noch nicht oder nicht korrekt assigniert worden ist oder wenn ein SRXM-Befehl bereits ausgeführt wurde (TBSY high).

Beispiele:

SRXM	1 14 R 1500 R 100	 ; Die Register 1500-1513 werden ; von einer Slave-Station gelesen ; und in die Register 100-113 ; der Master-Station kopiert.
SRXM	1 0 K 1000 R 20	; Die Uhr wird von einer; Slave-Station gelesen und in die; Register 20 und 21 der Master-; Station kopiert.

Seite 3-26

Code	Beschreibung der F	unktion	Resultat		
K 07	Read CPU Status:		R	Run	
	06: CPU-Numm	ner der Slave-PCD	С	Conditiona	l Run
	7: eigener CPU	J Status	Н	Halt	
			S	Stop	
			D	Disconnect	ted
K 1000	Read Clock		Der Inhalt	der Uhr wird	l in zwei Re-
			gister gesc	hrieben	
			(gleiches H	Format wie R	TIME inst.)
K 2000	Read Display Regis	ter			
K 5000	Read Device type	in ASCII	ASCII	Dec	Тур
K 5010		in dezimal	" D1"	1	PCD1
			" D2"	2	PCD2
			" D4"	4	PCD4
			" D6"	6	PCD6
K 5100	Read Module type	in ASCII	ASCII	Dec	Тур
K 5110		in dezimal	" M1_"	10	PCD1.M1
			" M1_"	10	PCD2.M1
			" M11"	11	PCD4.M11
			" M12"	12	PCD4.M12
			" M14"	14	PCD4.M14
			" M24"	24	PCD4.M24
			" M34"	34	PCD4.M34
			" M44"	44	PCD4.M44
			" M1_"	10	PCD6.M1
			" M2_"	20	PCD6.M2
			" M3_"	30	PCD6.M3
			" M54"	54	PCD6.M5
K 5200	Read firmware vers	ion in ASCII	Beispiel ei	ner gültigen	Antwort:
			" \$4C", " (004", " X41"	
K 5210		in dez.	Beisp.: 5	dez. für Ver	sion 005
			-1	l dez. für jed	e '\$', 'X',
				<u>'β-Versi</u>	on
K 5300	Read CPU number	in ASCII	ASCII	Dec	Туре
K 5310		in dezimal	" 0"	0	PCD1
			" 0"	0	PCD2
			" 0" od. "	1" 0 od. 1	PCD4
			" 0" bis "	6" 0 bis 6	PCD6
K 6000	Read S-Bus station	number in BROAD	CAST		
	Dieses Telegramm w	ird immer im Broad	cast-Modus	gesendet (A	dresse = 255).
	Dieser Modus funkti	oniert nur bei Punkt	-Punkt Kon	munikatione	en.

3.4.1 Spezialfunktionen

3.4.2 Transfer von Datenböcken (Lesen)

Das Format des SRXM-Befehls unterscheidet sich beim Arbeiten mit Datenblöcken leicht vom konventionellen Format. Bei einer Element-Adressierung eines Datenblocks muss die Nummer des Datenblocks und die Position des Elements innerhalb des Datenblocks angegeben werden.

Format:	SRXM	Kanal Count + Position
		Ziel

Kanal: Dieser Parameter wird zur Angabe der Kanalnummer verwendet (Bereich: 0...3).

Count + Position:

Dieser Parameter ist eine Registernummer. Dieses Register beinhaltet den "Count" bzw. die Anzahl zu transferierender Elemente (Bereich 1...32) und die "Position" innerhalb des Datenblocks, wo Daten geschrieben oder gelesen werden können. "Count" ist im MS-Word und "Position" ist im LS-Word des Register gegeben. Die Initialisierung dieses Registers erfolgt auf einfache Weise mit den LDL- und LDH-Befehlen. Die Initialisierung von "Position" mit den LDL-Befehlen, muss <u>vor</u> der Initialisierung von "Count" mit dem LDH erfolgen, da der LDL-Befehl das MS-Word mit Null überschreibt.

Quelle / Ziel:

Diese Parameter spezifizieren Quelle und Ziel des Transfers. Quelle und Ziel müssen die weiter oben beschriebene Quelle-Ziel Validität respektieren.

SRXM in indexiertem Modus.

Dieser Befehl kann im indexierten Modus verwendet werden (SRXMX). Wenn im indexierten Modus gearbeitet wird, werden Quelle und Ziel mit Standard-Medien (I/O/F/R/T/C) indexiert, <u>Datenblöcke werden nie in-</u><u>dexiert</u>.

SRXM in parametriertem Modus.

Wenn mit Datenblöcken gearbeitet wird, kann ein Funktionsblock und ein SRXM-Befehl immer im parametrisierten Modus verwendet werden.

Beispiel:

Die Register 2000...2031 (32 Elemente) der Slave Station werden in den Datenblock #7999 von der Position 10000 der Master-Station via Kanal #3 transferiert.

LDL	R	100	; Initialisierung der Position in den DB
LDH	R	10000 100	; Initialisierung von Count
		32	
SRXM		3	; Transfer
	R	100	;
	R	2000	•
	DB	7999	• 2

Fehlermeldung

Liste der Fehler, welche auftreten können und wie diese mittels des Diagnose-Registers des S-Bus signalisiert werden.

<u>SRXM DB</u> \rightarrow R oder T/C.

"range error" des Diagnose-Registers wird gesetzt, wenn:

- Count = 0 oder \ge 33
- ein Zugriff versucht wird, welcher die Adressierkapazität des Mediums übersteigt (z.B. Register 4096 und höher)

"no response" des Diagnose-Registers wird gesetzt, wenn:

- der Datenblock in der Slave-Station nicht existiert
- der Datenblock in der Slave-Station als Text definiert ist
- versucht wird, Elemente zu holen, welche jenseits des Datenblock-Endes liegen
- versucht wird, ein Datenblock in der Memory-Extension (DB 4000....7999) zu holen und keine Memory-Extension in der Slave-Station vorhanden ist

<u>SRXM R oder T/C \rightarrow DB.</u>

"range error" des Diagnose-Registers wird gesetzt, wenn:

- Count = 0 oder \geq 33
- ein Zugriff versucht wird, welcher die Adressierkapazität des Mediums übersteigt (z.B. Register 4096 und höher)
- der Datenblock in der Master-Station nicht existiert
- der Datenblock in der Master-Station als Text definiert ist
- versucht wird, Elemente zu holen, welche jenseits des Datenblock-Endes liegen
- versucht wird, ein Datenblock in der Memory-Extension (DB 4000....7999) zu holen und keine Memory-Extension in der Master Station vorhanden ist

Grösse eines Datenblockes.

Format:	SRXM		Channel	; 1. Parameter
		K	3000	; 2. Parameter
		DB	X	; 3. Parameter
		R	У	; 4. Parameter

'Channel': Dieser 1. Parameter wird dazu verwendet, die Kanalnummer zu spezifizieren (Bereich: 0...3).

'2. Parameter':

K 3000 gibt an, dass ein "Read Size of Data-Block" ausgeführt wird.

'3. Parameter':

Dieser Parameter spezifiziert die Nummer des Datenblockes. '4. Parameter':

> Dieser Parameter spezifiziert die Nummer des Registers, in welches der Wert (Grösse des Datenblockes) geschrieben wird

Fehlermeldung

Ein "range error" tritt auf, wenn der dritte Parameter kein Datenblock oder der vierte Operand kein Register ist.

Rückgemeldeter Wert des "Read Data-Block Size".

Bedeutung des Wertes im Register welches durch den 4. Parameter definiert ist.

0 : Der Datenblock der Slave-Station existiert nicht

1...n : Grösse des Datenblocks in der Slave-Station (n max. = 16384)

65535 : (oder FFFF hex) bedeutet, dass der spezifizierte Datenblock im Slave als Text definiert worden ist

Beispiel:

Die Grösse des Datenblocks #3999 der Slavestation wird im Register #100 der Master-Station übertragen.

SRXM		2
	Κ	3000
	DB	3999
	R	100

<u>Grösse eines Datenblocks im indexierten Modus.</u> Das Lesen eines Datenblocks kann im indexierten Modus stattfinden. Format:

SRXMX	<channel></channel>	; 1. Parameter
	K 3000	; 2. Parameter
	DB x	; 3. Parameter
	R y	; 4. Parameter (indexiert)
	2	

Der erste bis dritte Parameter bleibt wie im normalen Modus. Einzig das Ziel-Register wird indexiert.

3.4.3 Praktische Anwendungen

Die Eingänge 0..31 sind von der Slave-Station Nummer 5 in die Flags 500..531 der Master-Station zu kopieren.

Programm der Master-Station:

	XOB		16	
	SASI		1 100	; Schnittstelle Nr. 1 ; Definitionstext 100
TEXT	100		"UART:960 "MODE:SM "DIAG:F10	00;" M1,R500;" 000,R1000"
	EXOB			
	COB		0 0	
	STH ORH CPB STH CPB FCOB	F F H F L	1002 1005 ERROR 1003 RECEIVE	; Wenn RDIA ; oder TDIA-Flag = H ; dann Fehler behandeln ; Wenn TBSY-Flag = L ; dann Daten lesen
	ECOB			
	PB LD SRXM	R	RECEIVE 500 5 1	; Lade Stationsnummer ; (Nr. 5) ; Schnittstelle Nr. 1
		Ι	32 0	; Lese 32 Elemente ; Eingänge 031 und kopiere
	EPB	F	500	; diese in die Flags 500531
	PB		ERROR	; Fehlerbehandlung
	 EPB			

Fehlerbehandlung:

Das Abfragen der RDIA- und TDIA-Diagnose-Flags ist optional und muss nicht programmiert werden. Es wird jedoch angeraten, diese Flags speziell während der Inbetriebnahme und auch später während des Betriebes zu überwachen. Somit können Probleme früh erkannt und Lösungen schnell bereitgestellt werden.

Abhängig vom Fehlertyp, können grössere Probleme, welche ein sofortiges Eingreifen erfordern oder temporäre Funktionsstörungen auftreten, welche die Anlage oder die Maschine in ihrer Funktionsweise nicht beeinträchtigen.

Beispiele:

- Programmierfehler (Range Error, Program Error, etc.) fallen normalerweise bei der Inbetriebnahme auf und können sofort behoben werden.
- Wenn das NEXE-Flag gesetzt ist, bedeutet dies, dass der letzte Befehl nicht ausgeführt worden ist (SRXM oder STXM).

Programm für eine Slave-Station:

	XOB	16
	 SASI	1 100
TEXT	100	"UART:9600; "MODE:SS1;" "DIAG:F1000,R1000"
	 EXOB	

Im Falle einer Slave-Station muss einzig die Schnittstelle mit dem Anwender-Programm assigniert werden. Alle Kommunikationen im S-Bus-Modus werden dann im Hintergrund durch die autonom arbeitende CPU durchgeführt. Es ist nicht notwendig, die Flags zu überwachen, da praktisch alle Kommunikationsfehler von der Master-Station erkannt werden und deshalb keine Überwachung verlangen.

3.5 STXM - Sende Daten zu einer Slave-Station

Beschreibung:

Der Befehl kopiert Daten von der Master-Station zu einer Slave-Station. Die Stationsnummer der Slave-Station muss vor der Ausführung des Befehls in das mit dem SASI-Befehl definierte Register geladen werden.

Der Befehl kann nur in der Master-PCD-Station verwendet werden.

Während der Bearbeitung des Befehls wird das TBSY-Flag = H gesetzt. Das Flag wird zurückgesetzt, wenn der Datentransfer beendet ist. Das TBSY-Flag muss deshalb vor der Ausführung eines anderen STXM-Befehls auf den Zustand "L" abgefragt werden.

Der Befehl besteht aus vier Zeilen:

- Der erste Operand ist die Kanal-Nummer.
- Der zweite Operand definiert die Anzahl der zu sendenden Elemente.
- Der dritte Operand definiert die Basisadresse (tiefste) der Quellemente in der Master-PCD.
- Der vierte Operand definiert die Basisadresse (tiefste) der Zielelemente in der Slave-PCD.

Format:

STXM[X]Kanal Anzahl Quelle (i) Ziel (i)		; Kanal-Nummer ; Anzahl der zu sendenden Elemente ; Basisadresse der Quellelemente (Master) ; Basisadresse der Zielelemente (Slave)		
Kanal:	03	zu verwen	dende Schnittstelle	
Anzahl:	132 1128 0	zu lesende Anzahl R/T/C *) zu lesende Anzahl I/O/F Code für spezielle Funktionen		
Quelle:	I/O/F R T/C DB K	08191 04095 01599 07999 4000	Basisadresse der Elemente in der Master-PCD	
Ziel:	I/O/F R T/C DB K K	08191 04095 01599 07999 1000 17, 18, 19	Basisadresse der Elemente in der Slave-PCD schreibe die Uhr in die Slave-PCD spezielle Funktion	

*) bei älterer PCD-Firmware kann die Anzahl R/T/C auf 31 begrenzt sein.

			Slave-PCD (Ziel)					
		0	F	R	С	Т	DB	Clock
	Ι	٠	•					
	0	٠	•					
Master-PCD	F	٠	•					
(Quelle)	R			•	٠	٠	•	•
	С			•	٠	٠	•	
	Т			•	•	٠	•	
	DB			•	٠	•		
	DB			•	•	•		

Aus nachfolgender Tabelle ist ersichtlich, welche Elemente von der Quellstation auf welche Elemente in der Zielstation kopiert werden können.

Beim Schreiben der Uhr werden zwei Register übertragen. Für das Datenformat der Register siehe auch den Befehl "WTIME".

3.5.1 Spezialfunktionen

Die Ausführung eines XOB in einer Slave-Station kann unter Verwendung eines STXM-Befehls erzwungen werden. Folgende Argumente werden dazu verwendet:

STXM		03	; Serielle Kanalnummer
		0	; (muss 0 sein)
	Κ	4000	; Anzeige XOB Interrupt
	Κ	17 18 19	; Nummer des auszuführenden XOB

Dieser Befehl kann ebenfalls im Broadcast-Modus verwendet werden. Eine Synchronisierung der Vorkommnisse wird so ermöglicht.

Flags:

Das Error-Flag wird gesetzt, wenn die Schnittstelle nicht oder nicht korrekt assigniert ist oder wenn ein STXM-Befehl ausgeführt wird, obwohl das TBSY-Flag "H" ist.

Beispiele:

STXM	R R	1 25 300 2400	 ; Die Register 300-324 werden ; von der Master-Station zu einer ; Slave-Station in die Register 2400- ; 2424 kopiert.
STXM	R K	1 0 20 1000	; Die Uhr einer ; Slave-Station wird mit dem Inhalt ; der Register 20 und 21 geschrieben

3.5.2 Transfer von Datenblöcken (Schreiben)

Das Format des STXM-Befehls, im Zusammenhang mit Datenblöcken, weicht leicht vom konventionellen Format ab. Bei der Adressierung eines Datenblockes ist die Angabe der Datenblocknummer und darauffolgend die Position der Elemente im Datenblock notwendig.

Format:	STXM	Kanal Count + Position Quelle
		Ziel

Kanal:

Dieser Parameter wird zur Angabe der Kanalnummer verwendet (Bereich: 0...3).

Count + Position:

Dieser Parameter ist eine Registernummer. Dieses Register beinhaltet den "Count" bzw. die Anzahl der zu transferierenden Elemente (Bereich 1...32) und die "Position" innerhalb des Datenblocks, wo Daten geschrieben oder gelesen werden. "Count" ist im MS-Word und "Position" ist im LS-Word des Registers gegeben. Die Initialisierung dieses Registers erfolgt auf einfache Weise mit den LDL- und LDH-Befehlen. Die Initialisierung von "Position" mit den LDL-Befehlen, muss <u>vor</u> der Initialisierung von "Count" mit dem LDH erfolgen, da der LDL-Befehl das MS-Word mit Null überschreibt.

Quelle / Ziel:

Diese Parameter spezifizieren Quelle und Ziel des Transfers. Quelle und Ziel müssen die oben beschriebene Quelle-Ziel Validität respektieren.

STXM in indexierten Modus.

Dieser Befehl kann im indexierten Modus verwendet werden (STXMX). Wenn im indexierten Modus gearbeitet wird, werden Quelle und Ziel mit Standard Medien (I/O/F/R/T/C) indexiert. <u>Datenblöcke werden nie in-</u><u>dexiert</u>.

STXM in parametriertem Modus.

Wenn mit Datenblöcken gearbeitet wird, kann ein Funktionsblock und ein STXM-Befehl immer im parametrisierten Modus verwendet werden.

Beispiel:

20 Elemente des Datenblocks #4000 werden via Kanal #1 von Position 50 der Master-Station zum Register 1000...1019 der Slave-Station transferiert.

LDL	R	100 50	; Initialisierung der Position im DB
LDH	R	100 20	; Initialisierung der Count
STXM	R DB R	1 100 4000 1000	; Transfer ; ;

Fehlermeldung:

STXM DB \rightarrow R oder T/C.

"range error" des Diagnose-Registers ist gesetzt, wenn:

- Count = 0 oder \ge 33
- einen Zugriff versucht wird, welcher die Adressierkapazität des Mediums übersteigt (z.B. Register 4096 und höher)
- der Datenblock in der Master-Station nicht existiert
- der Datenblock in der Master-Station als Text definiert ist
- versucht wird, Elemente zu holen, welche jenseits des Datenblock-Endes liegen
- versucht wird, ein Datenblock in der Memory-Extension (DB 4000....7999) zu holen und keine Memory-Extension in der Master Station vorhanden ist

STXM R oder T/C \rightarrow DB.

"range error" des Diagnose-Registers ist gesetzt, wenn:

- Count = 0 oder \geq 33
- einen Zugriff versucht wird, welcher die Adressierkapazität des Mediums übersteigt (z.B. Register 4096 und höher)

"NAK response" des Diagnose-Registers ist gesetzt, wenn:

- der Datenblock in der Slave-Station nicht existiert
- der Datenblock in der Slave-Station als Text definiert ist
- versucht wird, Elemente zu holen, welche jenseits des Datenblock-Endes liegen
- versucht wird, ein Datenblock in der Memory-Extension (DB 4000....7999) zu holen und keine Memory-Extension in der Master Station vorhanden ist

3.5.3 Praktische Anwendungen

Register 150..165 sind von der Master-Station in die Counter 500..515 der Slave-Station 12 zu kopieren.

Programm der Master-Station:

	XOB		16		
	SASI		1 900	; Schnittstelle Nr. 1 ; Definitionstext 900	
TEXT	900		"UART:9600;" "MODE:SM1,R500;" "DIAG:F2500,R4095"		
	EXOB				
	COB		0 0		
	STH ORH CPB STH CPB ECOB	F F H F L	2502 2505 ERROR 2503 TRANSMIT	; Wenn RDIA ; oder TDIA-Flag = H ; dann Fehler behandeln ; Wenn TBSY-Flag = L ; dann Datenübermittlung	
	PB LD STXM EPB	R R C	TRANSMIT 500 12 1 16 150 500	; Lade Register 500 ; mit Stationsnummer 12 ; Schnittstelle Nr 1 ; Übertrage 16 Elemente ; ab Register 150165 ; zu Counters 500515	
	PB		ERROR	; Fehlerbehandlung	
	 EPB				

Fehlerbehandlung:

Das Abfragen der RDIA und TDIA Diagnose-Flags ist optional und muss nicht programmiert werden. Es wird jedoch angeraten, diese Flags speziell während der Inbetriebnahme und auch während des Betriebes zu überwachen. Somit können Probleme früh erkannt und Lösungen schnell gefunden werden.

Abhängig vom Fehlertyp, können grössere Probleme, welche ein sofortiges Eingreifen erfordern oder temporäre Funktionsstörungen auftreten, welche die Anlage oder die Maschine in ihrer Funktionsweise nicht beeinträchtigen.

Beispiele:

- Programmierfehler (Range Error, Program Error etc.) fallen normalerweise bei der Inbetriebnahme auf und können sofort behoben werden.
- Wenn der NEXE-Flag gesetzt ist, bedeutet dies, dass der letzte Befehl nicht ausgeführt worden ist (SRXM oder STXM).

Programm für eine Slave-Station:

	XOB	16
	 SASI	1
TEXT	100	100 "UART:9600; "MODE:SS1;"
		"DIAG:F1000,R1000"

EXOB

Im Falle einer Slave-Station muss einzig die Schnittstelle mit dem Anwenderprogramm assigniert werden. Alle Kommunikationen im S-Bus-Modus werden dann im Hintergrund durch die autonom arbeitende CPU durchgeführt. Es ist nicht notwendig, die Flags zu überwachen, da praktisch alle Kommunikationsfehler von der Master-Station erkannt werden und somit keine Überwachung verlangen.

3.6 SASII - Indirekte Assignierung serieller Schnittstellen

Beschreibung:

Dieser Befehls hat die gleiche Auswirkung wie die SASI-Anweisung. Der Unterschied besteht jedoch darin, dass der indirekte Modus verwendet wird. Dabei sind die Kanalnummer und die Nummer des Definitionstextes je in einem Register abgelegt.

Format:

Т	
L	Definitionstext

Kanal:	Kanalnummer des zu initialisierenden Kanals			
	Dieser Parameter kan	nn direkt oder indirekt eingegeben werden:		
	03	Nummer des seriellen Kanals		
	R 04095	Register mit Kanalnummer (03)		

Textdefinition:

Dieser Parameter ist eine Registernummer (R 04095)					
Dieses Register beinhaltet die Adresse des Textes, in welchem					
die Schnittstellenparameter definiert werden.					
Gültige Textadressen	sind:				
03999	im Standardspeicher				
40007999	im Erweiterungsspeicher				

Beispiele:

SASII	1 R 1	; Initialisiere Kanal 1 ; Textadresse der Schnittstellenparameter ; liegt in R 1
SASII	R 0	; Initialisiere Kanal dessen Nummer im ; R 0 liegt
	R 1	; Textadresse der Schnittstellenparameter ; liegt in R 1

Flags:

Das Error-Flag wird gesetzt, wenn der Definitionstext fehlt oder nicht korrekt ist oder wenn die Schnittstelle als S-Bus PGU-Port konfiguriert ist.

Der Definitionstext ist derselbe wie derjenige für den SASI-Befehl.

SASII funktioniert im indexierten und parametrierten Modus nicht.

3.7 SRXMI - Lese Daten indirekt

Beschreibung:

Dieser Befehl hat die gleiche Auswirkung wie die SRXM-Anweisung. Der Unterschied besteht jedoch darin, dass der indirekte Modus verwendet wird. Dies bedeutet, dass die Anzahl der Medien für Quelle und Ziel einem Register entnommen wird. SRXMI ist nur für den Transfer von Medien verfügbar. Transferoptionen wie Hardwareuhr, Display-Register, usw. sind nicht verfügbar.

Format:

SRXMI	Kanal
	Count oder Count + Position
	Quellen-Typ und Register-Nummer
	Ziel-Typ und Register-Nummer

Kanal: Dieser Parameter wird zur Spezifikation der Kanalnummer verwendet (Bereich: 0...3).

Count oder Count + Position:

Dieser Parameter ist eine Registeradresse. Dieses Register beinhaltet den "Count" für Standardmedien oder "Count" und "Position" für einen Datenblock. Für einen Datenblock wird "Count" in das MS-Word und "Position" in das LS-Word des Registers abgelegt. Die Initialisierung dieses Registers erfolgt mit LDL- und LDH-Befehlen.

Quellen-Typ und Register-Nummer: Ziel-Typ und RegisterNummer:

> Diese Parameter spezifizieren "Quelle" und "Ziel" des Transfers. Jeder Parameter setzt sich aus Zeichen zusammen, welche den Medien-Typ (I/O/F/R/T/C/DB) und eine Registeradresse (0...4095) bezeichnen. Quelle und Ziel müssen die in der Tabelle der SRXM/STXM-Befehle beschriebene Quelle-Ziel Validität respektieren.

SRXMI funktioniert im indexierten und parametrierten Modus nicht.

1. Parameter 2. Parameter 3. Parameter 4. Parameter I/O/F + R#O/F + R#R/T/C + R#R/T/C + R#R R/T/C + R#DB + R#OUT 0...3 IN DB + R#R/T/C + R#Grösse des Daten-Blocks K 3000 DB + R#R

SRXMI Syntax Flussdiagramm

Beispiel:

Ausgang #200...231 (32 Elemente) der Slave-Station wird auf die Flags #1000...1031 der Master-Station via Kanal #3 transferiert.

LD	R	100	; Initialisierung von Count
LD	R	32 101	; Ausgang 200
LD	р	200	EL - 1000
LD	K	102 1000	; Flag 1000
CDVA		2	. V
SKXMI		3	; Kanal #3
	R	100	; R 100 = 32
	0	101	; R 101 = 200
	F	102	; R 102 = 1000

Fehlermeldung

Bei Standard-Medien entsprechen die Fehlermeldungen denjenigen der bestehenden SRXM-Befehle. Ein "range error" tritt dann auf, wenn Count = 0 wird. Wenn die Datenblöcke belegt sind, kommem dieselben Fehlermeldungen wie bei SRXM zur Anwendung.

Grösse der indirekten Datenblöcke.

Mit dem SRXMI-Befehl kann die Grösse eines Datenblocks einer Slave-Station indirekt abgefragt werden. Das Format entspricht ungefähr demjenigen des direkten Formats, die Datenblocknummer befindet sich jedoch in einem Register.

Format:	SRXMI		Kanal	; 1. Parameter
		K	3000	; 2. Parameter
		DB	X	; 3. Parameter (indirekter Modus)
		R	У	; 4. Parameter

'Kanal'

Dieser 1. Parameter wird zum Spezifizieren der Kanalnummer verwendet (Bereich: 0...3).

'2. Parameter '

K 3000 gibt an, dass ein "Read Size of Data-Block" verlangt wird.

'3. Parameter'

Dieser Parameter spezifiziert den Datenblock und die Registeradresse, welche die Nummer des Datenblocks beinhaltet. Die Grösse des Datenblocks kann gelesen werden (einzig dieser Parameter ist im indirekten Modus).

'4. Parameter'

Dieser Parameter spezifiziert die Registernummer, in welchem der zurückkommende Wert (return value) (Grösse des Datenblocks) geschrieben wird.

Zurückkommender Wert des "Read Data-Block Size" indirect. Ist der zurückkommende Wert, welcher im Register mittels des 4. Parameters spezifiziert ist =

0:	dann existiert der Datenblock der Slave-Station nicht
1n:	Grösse des Datenblocks in der Slave-Station
	$(n \max = 16'384)$
65535:	(oder FFFF hex) bedeutet, dass der spezifizierte Daten-
	block im Slave als Text definiert wurde.

Beispiel:

LD	R	99 3999	; Init. Datenblocknummer
SRXMI		2	
	Κ	3000	
	DB	99	
	R	100	

In diesem Beispiel wird die Grösse des Datenblocks #3999 der Slave-Station via Kanal #2 in das Register #100 der Master-Station übertragen.

3.8 STXMI - Sende Daten indirekt

Beschreibung:

Dieser Befehls hat die gleiche Auswirkung, wie die STXM-Anweisung. Der Unterschied besteht jedoch darin, dass der indirekte Modus verwendet wird. Dies bedeutet, dass die Anzahl der Medien für Quelle und Ziel einem Registers entnommen wird. STXMI ist nur für den Transfer von Medien verfügbar. Transferoptionen wie Hardwareuhr, Display-Register usw., sind nicht erlaubt.

Format:

STXMI	Kanal
	Count oder Count + Position
	Quellen-Typ und Register-Nummer
	Ziel-Typ und Register-Nummer

Kanal: Dieser Parameter wird zur Spezifikation der Kanalnummer verwendet (Bereich: 0...3).

Count oder Count + Position:

Dieser Parameter ist eine Registeradresse. Dieses Register beinhaltet den "Count" für Standardmedien oder "Count" und "Position" für einen Datenblock. Für einen Datenblock wird "Count" in das MS-Word und "Position" in das LS-Word des Registers abgelegt. Die Initialisierung dieses Registers erfolgt mit LDL- und LDH-Befehlen.

Quellen-Typ und Register-Nummer: Ziel-Typ und Register-Nummer:

> Diese Parameter spezifizieren "Quelle" und "Ziel" des Transfers. Jeder Parameter setzt sich aus Zeichen zusammen, welche den Medien-Typ (I/O/F/R/T/C/DB) und eine Registeradresse (0...4095) bezeichnen. Quelle und Ziel müssen die in der Tabelle der STXM-Befehle beschriebene Quelle-Ziel Validität respektieren.

STXMI funktioniert im indexierten und parametrierten Modus nicht.

STXMI Syntax Flussdiagramm

Beispiel:

20 Elemente des Datenblocks #4000 von Position 50 bis 69 der Master-Station werden via Kanal #1 zu Register #1000...1019 der Slave-Station transferiert.

LDL	R	100	; Initialisierung der Position im Datenblock
	п	50	
LDH	ĸ	20	; initialisierung von Count
LD	R	101	; Initialisierung der DB-Nummer (Quelle)
LD	R	4000	; · Initialisierung der Registernummer (Ziel)
20		1000	;
STXMI		1	: Kanal #1
	R	100	; MSW von R $100 = 20$;
			; LSW von R $100 = 50$
	DB	101	; R 101= 4000
	R	102	; R $102 = 1000$

Fehlermeldung

Bei Standard-Medien entsprechen die Fehlermeldungen denjenigen der bestehenden SRXM-Befehle. Ein "range error" tritt dann auf, wenn Count = 0 wird. Wenn die Datenblöcke belegt sind, kommem dieselben Fehlermeldungen wie SRXM zur Anwendung.

3.9 SICL - Prüfen von Steuersignalen

Beschreibung:

Der SICL-Befehl prüft ein Steuersignal des im 1. Operanden definierten Kanals und speichert dessen Zustand im ACCU. Der 2. Operand definiert das zu lesende Signal:

- 0 = CTS Clear To Send (Sendebereitschaft)
- 1 = DSR Data Set Ready (Betriebsbereitschaft)
- 2 = DCD Data Carrier Detect (Empfangssignalpegel)

Für Kanal 0 (PGU) der PCD1, PCD2, PCD4 und PCD6.M540, sowie Kanal 4 (PGU) der PCD6.M300 darf der SICL-Befehl immer ausgeführt werden (unabhängig davon, ob der Kanal assigniert oder konfiguriert ist). Für jeden anderen Kanal der PCD1, PCD2, PCD4, PCD6.M540 oder PCD6.M300, darf der SICL-Befehl nur auf einem für S-Bus PGU konfigurierten Kanal ausgeführt werden. In der anderen Fällen darf der SICL-Befehl nur nach einem SASI-Befehl ausgeführt werden.

Format:

SICL	Kanal	; Serieller Kanal Nummer 0-3
	Signal	; Signal Nummer 0-2

Kanal: Dieser Parameter wird zur Spezifikation der Kanalnummer verwendet (Bereich: 0...3).

Signal Nummer:

0	CTS	Clear To Send (Sendebereitschaft)
1	DSR	Data Set Ready (Betriebsbereitschaft)
2	DCD	Data Carrier Detect (Empfangssignalpegel)

Flags:

Der ACCU wird entsprechend dem Status der adressierten Steuerleitungen gesetzt. Das Error-Flag ist gesetzt, wenn der Kanal nicht existiert oder nicht korrekt initialisiert wurde.

Hinweise:

- Bei einem für S-Bus Level 2 und einem am öffentlichen Telefonnetz angeschlossenen Modem konfigurierten Kanal kann z.B das DCD Signal gelesen werden, um zu detektieren, ob die PCD mit einem entfernt installierten Modem on-line verbunden ist. Entsprechend dem momentanen DCD Status können verschiedene Codes im Anwender-Programm ausgeführt werden.
- Die Programmiereinheit kann durch Lesen des DSR Signals (DSR = 1) detektiert werden.
- Es ist allerdings nicht möglich zu detektieren, ob die PCD mit S-Bus Level 2 on-line ist, da das DSR-Signal auf dem PGU-Kanal (PCD1/ PCD2/PCD4/PCD6.M5/M3) für den S-Bus Level 2 = L ist. Weiter kann auch nicht detektiert werden, ob der Kanal für eine Anwender-Assignierung frei ist.

3.10 SOCL - Beeinflussen von Steuersignalen

Beschreibung:

Der SOCL-Befehl setzt ein Steuersignal der bezeichneten Schnittstelle mit dem aktuellen logischen Zustand das ACCU (H, L). Im Operand der 1. Zeile wird die Kanal-Nummer angegeben. Im Operand der 2. Zeile wird angegeben, welches Signal beeinflusst werden soll:

0 = RTS	Request To Send (Sendeteil einschalten)
1 = DTR	Data Terminal Ready (Endgerät betriebsbereit)
2 =	Spezielle Funktion

Für Kanal 0 (PGU) der PCD1, PCD2, PCD4 und PCD6.M540, sowie Kanal 4 (PGU) der PCD6.M300, darf der SOCL-Befehl immer ausgeführt werden (unabhängig davon, ob der Kanal assigniert oder konfiguriert ist). Für jeden anderen Kanal der PCD1, PCD2, PCD4, PCD6.M540 oder PCD6.M300, darf der SOCL-Befehl nur auf einem für S-Bus PGU konfigurierten Kanal ausgeführt werden. In den anderen Fällen darf der SOCL-Befehl nur nach einem SASI-Befehl ausgeführt werden.

Format:

SOCL	Kanal	; Serieller Kanal Nummer 0-3
	Signal	; Signal Nummer 0-2

Kanal: Dieser Parameter wird zur Spezifikation der Kanalnummer verwendet (Bereich: 0...3).

Signal Nummer:

0	RTS	Request To Send (Sendeteil einschalten)
1	DTR	Data Terminal Ready (Endgerät betriebsbereit)
2		Spezielle Funktionen

Flags:

Das Error-Flag ist gesetzt, wenn der Kanal nicht existiert oder nicht korrekt initialisiert wurde.

Spezielle Funktionen:

Kanal 0 auf PCD2

Ein SASI für SM1/SS1 im Anwender-Programm wird den Kanal 0 entsprechend RS485 konfigurieren. Soll das RS232 Protokoll auf dem Kanal 0 verwendet werden, müssen die folgenden Befehle <u>nach dem</u> <u>SASI</u>-Befehl ausgeführt werden:

ACC	L	
SOCL		0
		2

Umschalten von RS485 auf RS422

Die serielle Schnittstelle RS422/RS485 der Schnittstellenmodule PCD7.F110/F150 und PCD2.F520/F530 sowie des Busmoduls PCD4.C130 schaltet bei der Assignierung gewisser Modi automatisch auf RS485 um.

Modus	Тур
MC0 MC3, MD0 / SD0	RS422
MC4, S-Bus	RS485

In gewissen Fällen muss die PCD zwingend den S-Bus mit RS422 betreiben.. Es müssen dann die folgenden Befehle <u>nach dem SASI</u>-Befehl ausgeführt werden:

Es ist auch möglich, den RS485-Modus mit MC0..MC3 oder MD0/SD0 mit folgenden Befehlen zu erzwingen:

ACC	Н
SOCL	Port_nb
	2

Umschalten vom Empfangs- zu Sendemodus in RS485

Es sind die folgenden Befehle nach SASI auszuführen :

• RS485 in Sendemodus schalten

ACC H SOCL Port_nb 0

• RS485 in Empfangsmodus schalten

3.11 SYSRD - System-Daten lesen

Beschreibung:

Dieser Befehl ermöglicht das Lesen der PCD-Systemparameter wie: PCD-Typ, CPU-Typ, Firmware-Version, Name des Anwenderprogramms, S-Bus Parameter, ...

Format:

SYSRD	Funktion	; Funktion Code		
	Resultat	; Resultat der Lesefunktion		
Funktion	:			
K x oder R x: Konstante oder Register, welche einen Funktion- scode enthalten. Dieser Befehl wird entweder dire mittels einer Konstante für den Funktionscode od indirekt, durch die Verwendung eines Registers, e gesetzt. Mit diesem Befehl können nützliche Sy- steminformationen über das Anwenderprogramm eingegeben werden				
Resultat: R 04095		Register mit den gefragten Informationen		
Beispiel		SYSRD K 5000 ; Liest den Typ der PCD ir R 20 ; und legt das Resultat in	n ASCII R 20	
Flags:		Bei fehlendem Funktionscode wird das Error-F gesetzt.	lag	

Funktionscode:

Code	Beschreibung der Funktion	Resultat		
	Lesen Anwender EEPROM	Wert im EEPROM		
2000	Register 0			
2001	Register 1			
2002	Register 2			
2003	Register 3			
2004	Register 4			
5000	Lesen PCD-Typ in ASCII	ASCII Dezimal Typ		
5010	in Dezimal	" D1" 1 PCD1		
		" D2" 2 PCD2		
		" D4" 4 PCD4		
		" D6" 6 PCD6		
5100	Lesen CPU-Typ in ASCII	ASCII Dezimal Typ		
5110	in Dezimal	" M1_" 10 PCD1.M1		
		" M1_" 10 PCD2.M1		
		" M11" 11 PCD4.M11		
		" M12" 12 PCD4.M12		
		" M14" 14 PCD4.M14		
		" M24" 24 PCD4.M24		
		" M34" 34 PCD4.M34		
		" M44" 44 PCD4.M44		
		" M1_" 10 PCD6.M1		
		" M2_" 20 PCD6.M2		
		" M3_" 30 PCD6.M3		
		" M54" 54 PCD6.M5		
5200	Lesen der Firmware-Version	Beispiele von Resultaten:		
	in ASCII	" \$4C", " 004", " X41"		
5210	in Dezimal	Bsp.: 5 dez. für Version 005		
		-1 dez für alle '\$', 'X', 'β'		
5400	Lesen Name des Anwenderprogr.	R x enthält die 4 ersten Charakter		
	in ASCII	des Namens in ASCII		
	Der Name des Anwenderprogramms	R x +1 enthält die 4 nächsten Ch.		
	enthält immer 8 ASCII Character	des Namens in ASCII		
6000	Lesen S-Bus Stations-Nummer	Beispiel eines Resultats:		
		2 Stations-Nnummer = 2		
		-1 Station nicht konfiguriert		
6010	Lesen S-Bus PGU TN delay			
6020	Lesen S-Bus PGU TS delay	Beispiel eines Resultats:		
		10 Delay in ms		
		-1 S-Bus nicht konfiguriert		
6030	Lesen S-Bus PGU timeout			
6040	Lesen S-Bus PGU baudrate	Beispiel eines Resultats:		
		9600 bps		
		-1 S-Bus nicht konfiguriert		

Code	Beschreibung der Funktion	Resultat		
6050	Lesen des S-Bus PGU-Modus	Status	Dez	
		Break ohne Modem	0	
		Parity ohne Modem	1	
		Data ohne Modem	2	
		Break mit Modem	10	
		Parity mit Modem	11	
		Data mit Modem	12	
		S-Bus nicht konfiguriert	-1	
6060	Lesen S-Bus PGU-Port-Nummer	Beispiel eines Resultats:: 1 S-Bus PGU-Port konfig auf Port 1 -1 S-Bus nicht konfigurier	Resultats:: -Port konfiguriert 1 konfiguriert	
6070	Lesen des S-Bus Level	Status	Dez	
		S-Bus Level 1 (reduziert)	1	
		S-Bus Level 2 (voll)	2	
		S-Bus nicht konfiguriert	-1	
6080	Lesen der CPU-Nr. an PGU	CPU 0	0	
	(S-Bus oder P8-Protokoll)	CPU 1	1	
6700	 Lesen des Modem-Status Bytes Liest den aktuellen Status der Modem-Verbindung. Diese Information sagt dem Anwender, in welcher Phase der Initialisierung sich das Modem befin- det. Mögliche Resultate: 2 PCD wartet auf Modem-Verbindung 639 PCD initialisiert das Modem. 40 Neuassignierung der Schnittstelle im Modus SS2/SS1/SS0. 4549 Modem-Verbindung verloren. Dies ist die Phase unmittelbar vor der Neuinitialiserung des Modems 50 Alles ist OK, die PCD ist online im Modus SS2/SS1/SS0 			
6500	Lesen des Modem-Typs			
6510	Lesen des Modem 'Reset Strings'			
6520	Lesen des Modem 'Initialisierungs-Strings'. Liest den spezifizierten Modem-String in den Registerblock, welcher mit der Basisadresse 'R x' beginnt.			
7000	Lesen des System-Counters	0 2.147.483.647		
	 Ein interner System-Zähler wird alle Millisekunden inkrementiert. Dieser Zähler wird beim Einschalten der PCD auf 0 zurückgesetzt; ein "Restart Cold" hat auf diesen Zähler keinen Einfluss. Die Kapazität des Zählers ist genau: 24 Tage 20 Stunden 31 Minuten 23 Sekunden 647 ms 			
	Ein Beispiel wird beim Befehl SYSCMP gezeigt im Befehlssatz Handbuch.			

3.12 SYSWR - System-Daten schreiben

Beschreibung:

Dies ist das Komplement zum SYSRD-Befehl. SYSWR erlaubt Änderungen der Systeminformation oder Initialisierungen von Systemfunktionen via das Anwender-Programm.

Hier wird einzig die Anwendung des SYSWR-Befehls im Zusammenhang mit dem S-Bus erklärt. Ausführlichere Auskünfte über andere Verwendungsmöglichkeiten dieses Befehls sind dem Handbuch "Befehlssatz für die PCD-Familie" zu entnehmen.

Format:

SYSWR Funktion	; Funktion Code
Wert	; zu schreibender Wert

Funktion:

K x oder	R x : Konstante oder Register, welche einen Funktion- scode enthalten. Dieser Befehl wird entweder direkt, mittels einer Konstante für den Funktionscode oder indirekt, durch Verwendung eines Registers einge- setzt. Mittels diesem Befehl können nützliche Sy- steminformationen über das Anwender-Programm übertragen werden.
Wert: K y R 0409 5	zu schreibender Wert Register mit dem zu schreibenden Wert
Flags:	Bei fehlendem Funktionscode wird das Error-Flag gesetzt.

Funktion:

Code	Beschreibung der Funktion			
4017 4018 4019	Ausführung der XOB 17 /18 / 19Aufruf der in 'R x' oder 'K x' definierten XOBs in der mit 'K y' oder 'R y'spezifizierten CPUDie XOBs 17/18/19 sind Anwender-XOBs, welche via den S-Bus oderdas Anwenderprogrmm aufgerufen werden können. Die XOB werden nurbehandelt, wenn die CPU in RUN oder CONDITIONAL RUN ist.			
	Funktionscode:4017Aufruf XOB 174018Aufruf XOB 184019Aufruf XOB 19			
	 Erlaubte Werte für 'R y' oder 'K y': 06 CPU in welcher der XOB aufgerufen werden soll 7 Aufruf des XOB in der eigenen CPU 8 Aufruf des XOB in allen CPUs. 			
6000	Schreiben der S-Bus StationsnummerÄndert die S-Bus Stationsnummer zum Wert in 'K y' oder 'R y' (im System-RAM und im EEPROM).Dieser Befehl kann in Anwenderprogrammen in RAM (Schreibschutz), inEPROM und in Flash EPROM verwendet werden.Erlaubte Werte für 'K y' oder 'R y': 0 254			
	Schreiben ins EEPROM (nicht bei allen PCD)Achtung:Das EEPROM-Register lässt sich max. 100'000 mal über- schreiben. Der SYSWR-Befehl darf deshalb nie in Programm- schlaufen enthalten sein. Beim Schreiben muss beachtet wer- den, dass der Befehl SYSWR etwa 20 ms dauert.			

3.13 Kommunikation via Modem

Der Einsatz von Modems wird notwendig, wenn bei der Kommunikation grosse Distanzen überbrückt werden müssen.

Distanzen für S-Bus mit der RS485 Schnittstelle:

- ohne Repeater max. 1.2 km
- mit drei hintereinander geschalteten Repeatern max. 4.8 km

Der Einsatz von Modems kann also schon ab einer Distanz >1.2 km sinnvoll sein. Die maximale Distanz ist abhängig vom Modem-Typ, der Baudrate und der Qualität der Leitung.

Grundsätzlich wird zwischen zwei Modem-Typen unterschieden:

• Modems für private Leitungen oder Standleitungen der Telecom Gesellschaft *)

Mit dem S-Bus-Modus Anwendungslevel 1 wird dieser Modem-Typ bereits heute voll unterstützt. Über diese Modems können alle PCD-Daten sowohl über eine einfache Punkt-Punkt Verbindung wie auch im Netzverbund ausgetauscht werden.

• Modems für das öffentliche Telefonnetz der Telecom Gesellschaft *)

Obwohl die Wahl einer Telefonnummer im S-Bus-Modus im Anwendunglevel 1 noch nicht unterstützt wird, ist die Kommunikation via Modem über das öffentliche Telefonnetz (Wahlnetz) der PTT trotzdem möglich. Mit diesen Modems können alle PCD-Daten über eine angewählte Punkt-Punkt Verbindung ausgetauscht werden. Dabei muss zur Wahl der Telefonnummer vorerst vom S-Bus-Modus auf den C-Modus umgeschaltet werden (Charakter-Modus). Nach dem Verbindungsaufbau wird wieder in den S-Bus-Modus zurückgeschaltet.

Die Verbindung kann analog, digital (ISDN) oder über Funk (GSM) erfolgen.

*) Telecom, Cablecom usw.

3.13.1 Multipoint Modems und Converter

Der Einsatz von Modems für private oder Stand-Leitungen der PTT sowie der Einsatz von Convertern PCD7.T120 und PCD7.T140 wird durch das S-Bus Protokoll voll unterstützt. Modems und Converter arbeiten nach demselben Prinzip.

Mit sogenannten "Multipoint"-Modems kann ein Master/Slave-Netzwerk über grosse Distanzen aufgebaut werden.

S-Bus Netzwerk mit "Multipoint"-Modems:

PCD 1/2/4/6

Die Schnittstelle RS232 bildet die Verbindung zwischen der PCD und dem Modem. Die Kommunikation zwischen den Modems erfolgt über eine 2 Draht-Leitung im Halbduplex-Betrieb.

Erfordernisse in Sachen Modem:

Für den SM2/SS2-Modus: (Data)

Jedes Standardmodem, welches 8 Databit, 1 Start- und 1 Stopbit unterstützt kann verwendet werden.

Für den SM1/SS1-Modus: (Parity)

Das Paritätsbit hat eine spezielle Aufgabe, das Modem muss deshalb 9 Databits unterstützen (8 für Daten + 1 Parität), 1 Start- und ein Stopbit.

Für den SM0/SS0-Modus: (Break)

Das Paritätsbit wird nicht verwendet, jedes Standardmodem, welches 8 Databits, 1 Start- und ein Stopbit unterstützt und den Break-Charakter transparent überträgt, kann eingesetzt werden.

S-Bus Netzwerk mit Converter PCD7.T120 und ..T140:

Funktionsprinzip:

In Zusammenarbeit mit einer PCD funktionieren die vorgängig erwähnten Modems und Converter ähnlich:

Auf einem RS485 Bus darf gleichzeitig nur ein Stations-Sender eingeschaltet sein. Um auf einer Zweidraht-Leitung eine Halbduplex-Kommunikation zu realisieren, muss demzufolge der Sender und der Empfänger durch jede PCD-Station auf dem Bus gesteuert werden.

Im Ruhezustand ist ein Modem oder ein Converter immer auf Empfang geschaltet. Bevor ein Telegramm übertragen werden kann, muss der Sender der teilnehmenden Station eingeschaltet und bei Übertragungsende wieder ausgeschaltet werden. Um über die Schnittstellen RS232 und RS422 den Sender eines angeschlossenen Modems oder Converters ein- und auszuschalten, wird die Steuerleitung RTS (Request To Send) der Schnittstelle im S-Bus-Modus während der Ausführung eines STXM- oder SRXM-Befehls automatisch gesteuert. Das RTS-Signal wird für die Dauer einer Telegrammübertragung eingeschaltet. Nach der Übertragung wird das Signal innerhalb von 1 ms wieder zurückgesetzt.

Das folgende Diagramm zeigt das Funktionsprinzip für einen SRXModer STXM-Befehl:

*) Das TFUL-Flag wird nur bis zu Baudraten von 4800 Baud gesteuert.

TN-Delay: (Delay time on turnaround = Umlaufverzögerungs-Zeit) Der Parameter definiert die Verzögerungszeit, welche bis zur Einspeisung des RTS-Signals in die Schnittstellen RS232 und RS422 verstreicht, respektive der Sender mit der Schnittstelle RS485 verbunden wird. Ein Telegramm kann erst nach Ablauf dieser Verzögerungszeit gesendet werden.

TS-Delay (Training-Sequence-Verzögerungszeit)

Der Parameter definiert eine Überwachungszeit für das CTS (Clear To Send) Signal des angeschlossenen Gerätes. Die PCD kann nur dann ein Telegramm senden, wenn das angeschlossene Gerät (Modem) seine Empfangsbereitschaft durch das Setzen des CTS-Signals anzeigt oder wenn das TS-Delay abgelaufen ist. Wird das CTS-Signal nach Ablauf des TS-Delay nicht gesetzt, so erfolgt ein Setzen des Bits 23 (CTS-Timeout) im Diagnose-Register. Die Überwachung und Behandlung des CTS-Signals ist nur aktiv, falls der Parameter im SASI-Text definiert wurde. Andernfalls wird das CTS-Signal ignoriert. Der Standardwert für die Zeit TS-Delay beträgt 0 ms.

Empfängt die Master-Station innerhalb der mit dem SASI-Befehl definierten Timeout-Zeit ein unvollständiges oder ein ungültiges Antwort-Telegramm, so wird das zuvor gesendete Telegramm noch einmal gesendet.

Datenfunk-Modem

Diese Modem-Typen ermöglichen eine drahtlose Datenübertragung im S-Bus-Modus. Das folgende Diagramm zeigt das Funktionsprinzip für einen SRXM- oder STXM-Befehl bei Verwendung eines Datenfunk-Modems:

*) Das TFUL-Flag wird nur bis zu Baudraten von 4800 Baud gesteuert.

Für den Betrieb eines Datenfunk-Modem wird zusätzlich die Steuerleitung DTR (Data Terminal Ready) benützt, damit vom Modem die UHF-Trägerfrequenz vor der Datenübermittlung stabilisiert werden kann. Im Unterschied zu den RTS- und CTS-Signalen wird das DTR-Signal nicht automatisch von der PCD gesteuert und muss deshalb durch das Anwenderprogramm mit dem SOCL-Befehl gesetzt respektive rückgesetzt werden.

SASI Definitionstext

Für den Betrieb eines Modem oder eines Repeaters kann die Definition des UART auf die Parameter Timeout, TS-Delay, TN-Delay und Break-Length ausgeweitet werden.

Format:

Weitere Angaben über die verschiedenen Parameter sind auf Seite 3-7 zu finden.

Die Angaben für Timeout, TS-Delay, TN-Delay und Break-Length sind optional. Wird nichts angegeben, so gelten die Standardwerte:

Timeout:	in Funktion der Baudrate berechnet
TS-Delay:	0ms.
Break-Length:	4 Zeichen (nur für SM0-Modus gültig)

Die Parameter können individuell definiert oder weggelassen werden. Timeout, TS-Delay und TN-Delay können individuell von 1 bis 15'000 ms gesetzt werden.

Beispiele:

"UART:9600,500,50,30,7;"	\rightarrow	Timeout = 500ms, TS-Delay = 50ms, TN-Delay = 30ms, Break-Length = 7 Charakter
"UART:9600,500,50;"	\rightarrow	Timeout = 500ms, TS-Delay = 50ms, TN-Delay = TS-Del/2 + Standard- TN-Del= 25ms + 1ms = 26ms, Standard Break-Length = 4 Char.
"UART:9600, ,100,50;"	\rightarrow	Standard Timeout und Break-Length, TS-Delay = 100ms, TN-Delay = 50ms Standard Break-Length = 4 Char.
"UART:9600, , ,30;"	\rightarrow	Standard Timeout , TS-Delay und Break-Length, TN-Delay = 30ms Standard Break-Length = 4 Char.

Bestimmung der Werte für TS-Delay, TN-Delay und Timeout:

Die Werte für TS-Delay und TN-Delay sind der Beschreibung des verwendeten Modem zu entnehmen. Bei Verwendung des Repeaters PCD7.T100 muss die Umschaltzeit TN-Delay angepasst werden. Die erforderlichen Werte können dem Handbuch 26/740 "Installationskomponenten für RS 485 Netzwerke" entnommen werden.

Für das Timeout gilt folgende Faustregel:

3.13.2 Modem für das öffentliche Telefonnetz der Telecom

Eine Verbindung über das öffentliche Telefonnetz wird aufgebaut, indem das Modem die Telefonnummer der gewünschten Partner-Station anwählt. Sobald die Punkt-Punkt Verbindung zwischen beiden Stationen aufgebaut ist, sind die beiden Modems transparent und es können PCD-Daten im SM2/SS2-Modus ausgetauscht werden.

Bevor ein Modem eine Telefonnummer wählen kann, muss diesem durch die PCD seine Betriebsart und die Nummer der Partner-Station mitgeteilt werden. Diese Funktion wird heute im S-Bus-Modus noch nicht unterstützt. Das Übertragen der Initialisierungs-Parameter und der Telefonnummer kann jedoch auch im C-Modus erfolgen.

Sobald eine Verbindung aufgebaut ist, wird die Schnittstelle in den S-Bus-Modus umassigniert, um Daten austauschen zu können.

Vorgehen, um eine Partner-Station anzurufen und Daten über das öffentliche Tf-Netz auszutauschen:

- 1. Schnittstelle in C-Modus assignieren
- 2. Modem initialisieren
- 3. Telefonnummer der Partner-Station wählen
- 4. Wenn die Verbindung aufgebaut ist (DCD = H), Schnittstelle in S-Bus-Modus umassignieren
- 5. Daten austauschen
- 6. Verbindung unterbrechen und Schnittstelle in C-Modus umassignieren

Vorgehen, um einen Anruf entgegenzunehmen:

- 1. Schnittstelle in C-Modus assignieren
- 2. Modem initialisieren
- 3. Schnittstelle bei einem Anruf (DCD = H) in S-Bus-Modus umassignieren
- 4. Sobald die Verbindung abgebrochen wird, Schnittstelle wieder in C-Modus umassignieren

3.14 Anwender-Programmbeispiele in IL

3.14.1 Beispiel 1

Bei dem Beispiel handelt es sich um ein sehr einfaches Testprogramm für die Inbetriebnahme eines S-Bus Netzwerkes.

Folgende Hardware-Installation wird verwendet:

Die Master-Station soll den Status der beiden Slave-Stationen 0 und 1 lesen und in die Register 1000 und 1001 kopieren.

Inbetriebnahme:

- 1. Als erstes ist die Hardware-Installation gemäss den Installationsvorschriften in den Hardware-Handbüchern zu überprüfen.
- 2. Weiter wird den Slave-Stationen die Stationsnummer, wie in Kapitel 3.1 beschrieben, mit dem Programmiergerät zugewiesen.
- 3. Mit dem Programmiergerät die Anwenderprogramme in die Slave-Stationen laden und die CPUs in RUN schalten.
- 4. Anwenderprogramm in die Master-Station laden (CPU nicht in RUN schalten).
- 5. Diagnose-Flag und -Register der seriellen Schnittstelle sowie die beiden Register 1000 und 1001 mit dem Debugger im Refresh-Fenster anzeigen.
- 6. Programm im Einzelschrittbetrieb (TRACE) abarbeiten und dabei die Diagnose-Elemente und die beiden Register 1000 und 1001 beobachten.

Bei einer korrekten Installation zeigen die Diagnose-Elemente keinen Fehler an und in den Registern 1000 und 1001 ist, nach Abarbeitung der SRXM-Befehle, das ASCII-Zeichen "R" (Run) gespeichert. Dies entspricht dem Zustand der beiden Slave-Stationen.

Auf den folgenden Seiten sind die Testprogramme für die Master-Station (TEST_M.SRC) und die Slave-Stationen (TEST_S0.SRC resp. TEST_S1.SRC) wiedergegeben.

; Test program for the S-Bus master station (PCD1.M120)

,			
; This program	n reads the status of	slaves 0 and 1 and stores i	it into
; the registers	1000 and 1001		
; File:	TEST_M.SRC		
; Création:	22.06.99	C. Alfonsi	

\$sasi				
~~~	TEXT		100	"UART:9600;" "MODE:SM2,R4;" "DIAG:E100 B998:"
\$endsasi	i			
•	XOB		16	; Cold start routine ; Assignation S-Bus
	SASI		1 100	; Assignation RS 485 interface ; with parameters in Text 100
	LD	R	1000 0	; Reset status register of server 0
	LD	R	1001 0	; Reset status register of server 1
	EXOB			
	; COB		0 0	; Main Program
	CSB ECOB		0	

SB 0

stl	F 103	
ld	R 4	· slave n° 0
srxm	1 0 k 0 R 1000	; channel 1 ; read status ; cpu 0 ; copy to R 1000
stl	F 103	
ld	R 4	: clavo nº 1
srxm	1 0 k 0 R 1001	; channel 1 ; read status ; cpu 0 ; copy to R 1001
stl	F 103	

; Test	progran	n for the S-Bu	s slave station 0
; Only ; File:	the RS 4	485 interface m _S0.SRC	ust be initialised
; Créat	tion:	22.06.99	C. Alfonsi
\$sasi	TEXT	100	"UART:9600;" "MODE:SS2" "DIAG:F100.R998:"
\$endsa	si		
	ХОВ	16	; Cold start routine
	SASI	1 100	; Assignation RS 485 interface ; with parameters in Text 100
	EXOB		
	СОВ	0	; Main Program
	ECOB	U	

; Test program for the S-Bus slave station 1		
; Only the RS	485 interface m	ust be initialised
; File:	TEST_S1.SR	C
; Création:	22.06.99	C. Alfonsi

\$sasi	TEXT	100	"UART:9600;" "MODE:SS2" "DIAG:F100,R998;"
\$endsas	si		
	ХОВ	16	; Cold start routine : Assignation S-Bus
SASI	1 100	; Assignation RS 485 interface ; with parameters in Text 100	
	EXOB		
	СОВ	0	; Main Program
	ECOB	0	

3.14.2 Beispiel 2

Dieses Beispiel kann bei der Inbetriebnahme einer S-Bus Installation mit Modem für private Leitungen oder Standleitungen der PTT verwendet werden.

Modem Typ: ALCATEL LBM 19200

Einstellung der DIL-Switch im Modem

	1	2	3	4	5	6	1	8	9	10	11	12
CLOSED												
OPEN												

Funktion des Programmes:

Die Master-Station kopiert 8 Quell-Elemente (I 8..15) auf die Ziel-Elemente (O40..47) einer Slave-Station. Die Adresse der Slave-Station kann über die BCD-Schalter (angeschlossen an den Eingängen 16..31) an der PCD6 vorgewählt werden.

Die Diagnose-Flags werden den Ausgängen 32..39 zugewiesen.

Das Diagnose-Register kann im Debugger im Refresh-Fenster angezeigt werden.

Auf den folgenden Seiten ist das Testprogramm für die Master-Station (TEST_M1.SRC) und die Slave-Stationen (TEST_SN.SRC) wiedergegeben.

Das Testprogramm ist für alle Slave-Stationen identisch.

; Test	; Test program for the S-Bus master station (PCD4.M125)			
; This j ; outpu ; File:	program its 4047	copies t 7 of a se TEST_	he input lected sla _M1.SRC	s 015 of the master station to the ave station
; Créat	ion:	22.06.	99	C. Alfonsi
\$sasi \$endsa	TEXT		100	"UART:9600,100,30;" "MODE:SM1,R4;" "DIAG:O32,R0;"
	ХОВ		16	; Cold start routine
	SASI		1 100	; Assignation S-Bus ; Assignation RS 232 interface ; with parameters in Text 100
	EXOB			
	;			
	СОВ		0	; Main Program
	STH	l F	0	; If Input 0 goes High
	ANL	Р О Н	35 1	; and TBSY = 0 : Then Write elements
	ECOB			,
	;			
	PB LD	R	1 0 0	; Write elements ; Clear diag register
	DIGI	l R	2 16 10	; Read destination station number ; on BCD switches on I 16
	STXM	I O	1 8 8 40	; Transmit ; Number of elements ; Source address : Destination address
	EPB	0		, 2001

Test program for the S-Bus slave station (PCD1)					
; Only th ; Only th ; For all ; File:	he RS 2 slaves	32 interface must the same program TEST SN.SRC	be initialised is used		
; Créatio	on:	22.06.99	C. Alfonsi		
\$sasi	TEXT	100	"UART:9600,100,30;" "MODE:SS1;" "DIAG:O32,R0;"		
\$endsasi	İ				
	XOB	16	; Cold start routine		
	SASI	1 100	; Assignation RS 232 interfac ; with parameters in Text 1	ж 00	
	EXOB ;				
	СОВ	0 0	; Main Program		
	ECOB				

3.15 Anwender-Programmbeispiel in FUPLA

Beispiel

Bei dem Beispiel handelt es sich um eine Anwendung bei welcher ein Master die folgenden Daten von zwei Slaves liest und schreibt:

- Slave 20:
 - Register 100..107 des Slaves werden auf die Register 200..207 des Masters kopiert.
 - Eingänge 16..23 des Masters werden auf die Ausgänge 32..39 des Slaves kopiert.
- Slave 22:
 - Die Eingänge 0..7 des Slaves werden auf die Flags 1000..1007 des Masters kopiert.
 - Die Flags 2000..2007 des Masters werden auf die Ausgänge 16..32 des Slaves kopiert.

Folgende Hardware-Installation wird verwendet:

Programm für die Master Steuerung

Initialisierung der Schnittstelle:

Г						-
ŀ		— —	Port 1			
ł						-
ľ			-Clr Stn-			-
		_	Err			-
						-
			290rt 1 2989 Diad	7		-
		_ _	SASEDiag	2		-
						•
┢						
\mathbf{F}		—C]
ŀ		—- <u>C</u>]
ŀ						
ŀ						_
ŀ						-
l						-
						-
						-
┟		- _				•
┝		F				┫
┢		—_ <u> </u>				
$\left \right $		—C]
ŀ		— <u> </u>				
ŀ		— —				
ľ						
	PAGE DES	<u>SCRIPTION</u>	ti faritha Maatar D.C	D		
	Sasi Intruct	tion for the por	TI for the Master PC	U		
┦	<u>FBOXEXT</u>	RAINFORMA	TION WITH ADJUS	T VARIABLES		
	1	FBox: SASI	S-BUS Extended (S/	ASI-Ex), Family:	Communication	
		Channel		Channel 1		
		S-Bus Mode	•	Data		
		Communica	tions mode	Master		
		RSTwpe		Default		
		Transmissio	n speed	9600 bps		
		S-BUS Time	eout [msec]	0		
		S-BUSTS-L	Delay [misec] Delay [misec]	U N		
		S-BUS Brea	ik length [car]	õ		
	2	FBox: SASI	Diagnostic (SASI-Dia	ag), Family: Com	munication	
		Oser Name: Channel		Port_1 Channel 1		
		Charner				
5						
111						
H.						
N SH						
1			Date	Name	File: g:\ec teilnehmer\s467\s-bus manual\master	'vnain.fup
A Last	í.	Creation	15:51:24, July 02.19	199	Block: COB 0	
10 X M		ast Modified	10:46:02 100:20 40	000	Dane: FLID_1 [SASI S Bus 1	
100		Last woulded	10.40.02, July 23, 18			· · · · ·
UPI NEOTON		FOR \$	SAIA'S II	NTERN	AL USE ONLY	Page 1/3

Kommunikation mit Slave 20:

Kommunikation mit Slave 22:

	1
⊢C	
	-
Port 1	
- SKSI-Diaga	
<u> </u>	
	1
⊢C	
-	
-	
_ _	
⊨F	
	<u>j</u>
<u>-</u>]
E]
Sasi Intruction for the port1 for the Slave PCD #20	
1 PBox: SAST S-BUS Extended (SAST-Ex), Painity: Communication User Name: Port_1 Channel Channel 1 S-Bus Mode Data Communications mode Slave Gateway No R S Type Default Transmission speed 9600 bps S-BUS Timeout (msec) 0 S-BUS TS-Delay (msec) 0 S-BUS TN-Delay (msec) 0 S-BUS Break length (car) 0 2 FBox: SAST Diagnostic (SAST-Diag), Family: Communication User Name: Port_1 Channel Channel 1	
Date Name File: g/ec tellnehmer/s467/s-bus manual/s Creation 15:51:24, July 02, 1999 Block: COB 0	lave 20/main_20.fup
Last Modified 15:45:22, July 02, 1999 Page: FUP-1 [Sasi_20]	
FOR SAIA'S INTERNAL USE ONLY	Page 1/1

Programm für die Slave Steuerung 20

Programm für die Slave Steuerung 22

4. Inbetriebnahme

4.1 Wichtigste Eigenschaften und Anwendungen

Mit dem Level 2 wird das gesamte S-Bus Protokoll unterstützt.

Die zusätzlichen Telegramme des Levels 2 unterstützen die Programmierung, Inbetriebnahme und Diagnose einer PCD mit dem Programmiergerät (PG). Der Level 2 kann nur mit der Programmiereinheit verwendet werden.

Das PG ist in jedem Fall Master im S-Bus Netzwerk. Der Zugriff auf eine Slave-Station kann in einer Punkt/Punkt Verbindung, über das RS485-Netzwerk oder via Modem auch über das Telefon-Wahlnetz erfolgen.

Wichtigste Eigenschaften des Levels 2 sind :

- Dank einfachem und effizientem S-Bus Protokoll schnelles Laden von Anwenderprogrammen (bis 38.4kBd).
- Programmierung und Inbetriebnahme aller am S-Bus Netzwerk angeschlossenen Slave-Stationen von einem zentralen Ort aus.
- Fern-Diagnose und -Programmierung mit Modem über das öffentliche Telefon-Wahlnetz.

Anwendungen

Programmierung, Inbetriebnahme und Diagnose

Lokal Punkt zu Punkt

Im RS485-Netzwerk

Mit Modem über das Telefon-Wahlnetz

4.2 Lokale Programmierung und Inbetriebnahme

Als Programmierschnittstelle (PGU) wird diejenige Schnittstelle bezeichnet, über welche die Programmiereinheit auf eine CPU Zugriff hat.

РСД-Тур	Port Nummer	Standard Protokoll
PCD1	Port 0	S-Bus
PCD2	Port 0	P8
PCD4	Port 0	P8
PCD6.M540	Port 0	P8
PCD6.M1/M2	mit PCD8.P800	P8
PCD6.M3	Port 4	S-Bus

Standard-PGU-Schnittstelle :

Das P8-Protokoll wird nur von dieser ursprünglichen PGU-Schnittstelle unterstützt. Mit dem S-Bus Protokoll Level 2 hat die Programmiereinheit zusätzlich noch über eine weitere Schnittstelle auf die CPU Zugriff (siehe auch Anhang B).

Im Fall von PCD2, PCD4 und PCD6.M540 CPUs, unterstützt die Schnittstelle Nr. 0 die P8- und S-Bus-Protokolle gleichzeitig, wenn dies mittels der Utilities entsprechend konfiguriert wurde. Das P8-Protokoll hat immer Priorität.

Dies bedeutet, dass :

- Bei Auslieferung ab Werk die PGU-Schnittstelle auf das P8-Protokoll eingestellt ist.
- Soll eine PGU-Schnittstelle für das S-Bus Protokoll konfiguriert werden, so kann diese Konfigurierung nur im P8-Protokoll vorgenommen werden.
- Es ist jederzeit möglich, mit der Programmiergerät und dem entsprechenden Programmierkabel via die PGU-Schnittstelle eine "Online"-Verbindung zu einer PCD-CPU herzustellen. Dies gilt auch, wenn die PGU-Schnittstelle bereits für einen anderen Zweck assigniert (z.B. Kommunikation mit einem Terminal im C-Modus) oder für das S-Bus Protokoll konfiguriert wurde.

Alle PGU-Schnittstellen der CPUs werden ab Werk mit dem P8-Protokoll konfiguriert. Davon ausgehend kann die PGU-Schnittstelle der PCD2, PCD4 und PCD6.M540 mittels der Programmiereinheit zusätzlich zum P8- auch für das S-Bus-Protokoll konfiguriert werden. Auf diese Weise unterstützt die CPU über die PGU-Schnittstelle beide Protokolle. Das PCD8.K111 Programmierkabel ermöglichet der CPU festzustellen, welches Protokoll gewählt wurde. Die Schnittstelle kann somit entsprechend assigniert werden. Die PCD1 und die PCD6.M3 unterstützen ab Werk das S-Bus PGU-Protokoll auf der PGU-Schnittstelle.

Im Fall der PCD6.M1/2.. wird der PCD8.P800 Schnittstellen-Prozessor mit der PGU-Schnittstelle verbunden. Dieser Prozessor unterstützt nur das P8-Protokoll und kann nicht als S-Bus PGU konfiguriert werden. Eine Standard-Schnittstelle kann jedoch als S-Bus PGU konfiguriert werden (siehe auch Anhang D).

Folgende Regeln werden angewendet :

• Zulässig sind maximal zwei PGU-Schnittstellen pro CPU. Es kann jedoch nur eine der beiden für den S-Bus konfiguriert werden.

Beispiele für die PCD4 :

Port 0	P8-PGU
Port 1 oder	S-Bus PGU
Port 0	P8 und S-Bus PGU

- Wenn eine Schnittstelle als S-Bus-PGU konfiguriert wurde, kann diese vom Anwender-Programm für allgemeine Kommunikation nur nach der Ausführung des Befehls SASI MODE OFF verwendet werden. Bei Ausführung eines SASI-Befehls ohne vorherige Entassignierung wird das Error-Flag gesetzt.
- Wenn zwei Programmiereinheiten gleichzeitig mit einer CPU verbunden sind, hat das Programmiergerät der Standard PGU-Schnittstelle (mit P8 Protokoll) Priorität. Dies bedeutet, dass die zweite Programmiereinheit nur einen reduzierten Zugang zur CPU hat. Es können nur Lesebefehle des Levels 2 ausgeführt werden. Auf Level 1 (Datentransfer Service) sind alle Schreib- und Lesebefehle erlaubt.

Wichtig :

Die Assignierung einer S-Bus PGU-Schnittstelle kann nicht mit einem SASI-Befehl ausgeführt werden, sondern muss mittels der PCD-Utilities (PG4 oder PG3) konfiguriert werden.

4.3 Konfigurierung und Assignierung einer S-Bus PGU-Schnittstelle

Die hier angewandte Prozedur hängt davon ab, ob RAM- oder EPROM-Speichermodule verwendet werden.

Werden RAM-Speichermodule auf der PCD verwendet, so wird die Konfigurierung der S-Bus PGU Schnittstelle direkt online auf der PCD vorgenommen.

Werden EPROM-Speichermodule auf der PCD verwendet, so wird die Konfigurierung der S-Bus PGU Schnittstelle im Offline Configurator definiert. Diese Definition wird dann bei der EPROM Programmierung im EPROM abgespeichert.

4.3.1 RAM-Speichermodule

Allgemein gilt folgendes: Eine S-Bus PGU-Schnittstelle kann nur via die Original-Schnittstelle und mit dem P8 Protokoll konfiguriert werden.

1. Schnittstellen, Baudraten und Übertragungsart beim PC einstellen. Aufruf von "Connect Options" im Menü "Online" im "Project Manager".

Inbetriebnahme

Auswahl von "PGU direct connection" und der korrekten CPU Nummer:

Connection Options		×
Channel		OK
<u>U</u> hannel name:	- Catur	Cancel
PGU direct connection	Setup	
COM1, PGO, 9600		
CPU <u>N</u> umber:		Help

Mit OK bestätigen.

- 2. Verbindungskabel PCD8.K111 zwischen PC und PCD anschliessen.
- 3. Im Project Manager den Knopf "Online Configurator" betätigen:

🖉 master - SAIA Project Manager	
Elle View Besource Project Online Lools Help	
	8 👩
Cuttent Working Directory: g:Sec tellemennet/sets/s-bus manual/master	

Danach ist die Online-Verbindung mit der PCD hergestellt.

🔏 SAIA PCD Online Configurator 📃 🗔 🔀						
<u>File O</u> nline <u>S</u> ett	ings <u>H</u> elp					
Memory	PCD Type: PCD1.M1_ Version: 006	<u>G</u> o Offline				
S- <u>B</u> US	Program Name: MANUAL1 Date: 29/7/99 Day: 4	Op <u>t</u> ions				
<u>C</u> lock	Time: 15:42:52 Week: 30 Status: Run	Ope <u>n</u> File				
History	CPU: 0 Baud: 9600	<u>H</u> elp				
Password	Station: 10 Protocol: PGU (S-BUS)	E <u>x</u> it				

4.

S-BUS Configuration

Betätigen des Knopfes "S-Bus"

5. Auswahl von "S-Bus Support" und betätigen des Knopfes "S-Bus"

S-BUS	Configuration		×
S-BI	JS		ок
	S- <u>B</u> US Support	<u>S</u> -BUS	
Gat	PCD1 S-BUS Configu	ration	<u>×</u>
Γ	S-BUS <u>S</u> tation Numb	per: 10	OK
- Put	PGU <u>P</u> ort Numb	per: 1	Cancel
	PGU Port <u>B</u> aud Ra	ate: 9600 💌	
Mo	S-B <u>U</u> S Moo	de: Data (S2) 💽	3
	-S-BUS Timing		
	Training Sequence [<u>D</u> elay (TS): 0 m:	s
	<u>T</u> urnaround [Delay (TN): 0 ms	s
	<u>R</u> espons	e Timeout: 0 ms	s Help

6. Definition der S-Bus Parameter:

Dieses Menü definiert die S-Bus Stationsnummer, die Nummer der für das S-Bus PGU einzusetzenden Schnittstelle, die Baudrate und der S-Bus-Modus (normalerweise "Data", wenn keine Modems verwendet werden) müssen hier definiert werden.

Normalerweise muss das "S-Bus timing" auf 0 belassen werden (= Standardwert).

Nach Betätigung der OK-Taste wird dieses Fenster verlassen und befindet sich danach im Fenster "S-Bus Configuration". Auch dieses Fenster wird mit der Taste 'OK' verlassen. Dabei erscheint der folgende Warnung auf dem Bildschirm:

WARNIN	IG - S-BUS Configuration 🛛 🔀
?	The PCD is in Run. Writing the new S-BUS configuration to the PCD will reset the PCD and it will go into Stop mode.
	Do you want to continue?
	Yes <u>N</u> o Cancel

Nachdem diese Warnung mit der YES-Taste bestätigt wurde, wird die aktuelle S-Bus Konfiguration in die PCD transferiert und in der PCD aktiviert.

 Kontrolle der konfigurierten S-Bus Parameter. Die konfigurierten S-Bus Parameter werden beim Aufruf des Fenster "S-Bus Configuration" im "Online Configurator" aus der PCD gelesen und auf dem Bildschirm angezeigt.

Baster - SAIA Project Har	ager 📃 💌 Online Iook Help
Current Work SAIA PCD Online Configurator	
main fuo	PCD Type: PCD1.M1_ Version: 006 Go Office
S- <u>B</u> US	S-BUS Conliguration
Qook	S-BUS F S-BUS Support S-BUS
History	-Gall PED1 S-BUS Configuration
	58US Station Number: 10 OK
	Publ PGU Bort Number: 1 Cancel
	Kor SBUS Mode: Data (\$2)
J	S-BUS Tining
Call PCD Online Configurator	Training Sequence Delay (TS): 0 ms
	Elesponse Timeout: 0 ms Help

Die S-Bus PGU-Schnittstelle ist nun mit dem S-Bus Protokoll konfiguriert und einsatzbereit. Diese Konfigurierung kann einzig mit dem "Online Configurator", mittels des Untermenüs "S-Bus Configuration", geändert werden.
4.3.2 **EPROM-Speichermodule**

Aufruf des "Offline Configurators" im "Project Manager". 1.

2. Im "Configuration File Editor" das Feld "S-Bus Support" anwählen und den Knopf "S-Bus" betätigen.

尾 master - SAIA PC	D Configuration File	Editor	
<u>File O</u> nline <u>H</u> elp			
Description:		Options	
		Manual Memory Allocation	Mensy
PCD Type:	Number of CPUs:	S- <u>B</u> US Support	Sigus
Code/Text Memory Si	PCD1 S-BUS Co	nfiguration 🔉 📐	×
64K Bytes, RAM/EPF Extension Memory Siz	S-BUS <u>S</u> tation	number: 0	OK
None	PGU <u>P</u> ort	t number: 1	Cancel
Program Namez	PGU port <u>B</u>	aud rate: 9600 💌	
	S-B <u>U</u>	S mode: Parity (S1)	•
	S-BUS Timing -		
	Training sequ	ence <u>D</u> elay (TS): 0	ms
	<u>T</u> urnar	ound delay (TN): 0	ms
	B	esponse timeout: 0	ms Help

Definition der S-Bus Parameter. Dieses Menü definiert die S-Bus 3. Stationsnummer, die Nummer der für das S-Bus PGU einzusetzenden Schnittstelle, die Baudrate und der S-Bus-Modus (normalerweise "Data", wenn keine Modems verwendet werden) müssen hier definiert werden. Normalerweise muss das "S-Bus timing" auf 0 belassen werden (= Standardwert)

Verlassen dieses Menüpunktes.

4. Mit dem Menü "Eprom Programmer" im "Project Manager kann danach ein EPROM programmiert oder eine HEX-Datei erstellt werden. Die S-Bus-Konfiguration wird automatisch ins EPROM geschrieben.

💯 master - SAIA Project Manager	_ 🗆 🗵
Elle View Besource Project Online Iools Help	
Current Working Directory: g:\ec teilnehment-seven under manuel/master	

- 5. Einstecken der EPROMs in die PCD und Verbindung zum Programmiergerät erstellen. PGU (P8) Protokoll mit dem "Connect Options" Untermenü im Menü "Online" wählen.
- 6. Mittels dem "Online Configurator" die Einstellung prüfen.
- 7. Die konfigurierte S-Bus PGU-Schnittstelle ist nun mit dem S-Bus Protokoll assigniert und einsatzbereit. Da die Konfiguration im EPROM gespeichert ist, kann eine Änderung der Daten einzig durch Neuprogrammierung der EPROMs erfolgen.

4.4 Verbindung des Programmiergerätes via den S-Bus

Die Programmiereinheit ist mit der S-Bus PGU-Schnittstelle (als Punkt-Punkt Verbindung oder via RS485-Netzwerk) zu verbinden und das S-Bus Protokoll, die CPU und die Stationsnummer vom "Online" Menü, Untermenü "Connection Options" auszuwählen.

🎏 master - SAIA Project Manager 📃								_ 🗆 ×		
	<u>F</u> ile ⊻i	ew <u>R</u> es	ource	<u>P</u> rojec	<u>O</u> nline	<u> </u>	<u>H</u> elp			
ĺ	Dir		1A		ر G	o <u>O</u> nline		F9		
k				<u>-</u>	<u>C</u> onnection Options					
l	Currer	nt Workin	g Direc	tory:	<u>c</u> D	ownload	N	+	master	_
	Files i	n project:			Γ D	ownload	Op <u>t</u> ions			_

Dabei muss eine 'S-Bus connection' ausgewählt werden:

Connection Options	×
Channel Channel name: S-BUS connection Setup	OK Cancel
COM1, S-BUS, 38400 CPU <u>N</u> umber: 0 S-BUS <u>Station</u> : 23 ☑ Auto	Help

Der Verbindungstest erfolgt mit dem "Online-Configurator" Dabei wird die Stations-Nummer und das S-Bus Protokoll in der Fusszeile des Fensters angezeigt.

📈 SAIA PCD Or	🖌 SAIA PCD Online Configurator 📃 🗔 🔀					
<u>F</u> ile <u>O</u> nline <u>S</u> ett	ings <u>H</u> elp					
<u>M</u> emory S- <u>B</u> US <u>C</u> lock	PCD Type: PCD1.M1_ Version: 006 Program Name: MANUAL1 Date: 29/7/99 Day: 4 Time: 17:21:48 Week: 30 Status: Stop at 0	<u>G</u> o Offline Op <u>t</u> ions Ope <u>n</u> File				
Hjstory <u>P</u> assword	CPU: 0 Baud: 38400 Station: 23 Protocol: S-BUS (Data)	<u>H</u> elp E <u>x</u> it				

Nach erfolgreicher Verbindung mit der im "Connect Options" Menü definierten Station sind alle Funktionen der PG4 Utilities via S-Bus PGU-Schnittstelle verwendbar. Bei gewähltem S-Bus Protokoll wird beim Debugger der PCD-Utilities die Stationsnummer jeder angeschlossenen Slave-Station auf der oberen Statuslinie (top line) des Bildschirms angezeigt.

	🏨 SALA	PCD 0	nline Del	bug						
	<u>Elle</u> <u>I</u> o	iols Qoti	iono <u>H</u> eip	5						
	Stn:	23	CPU:	0	Type:	DIMI	006	Status:	I.U.N	
l		R								
l										

Debug "cOnnect"

COMMUNICATIONS: S-BUS, 38400 Baud, COM1, Station 23 S-BUS MODE: Data (52) DEFAULT BATCH FILE "SBUG.DEA" LOADED ON LINE RUNNING >CONDECT
Cpu Bbus-station

Dieses Untermenü ermöglicht das Anwählen einer CPU der angeschlossenen Station (PCD4.M445).

In einem S-Bus-Netzwerk ist ein Umschalten zwischen den einzelnen Stationen möglich. (Nur möglich, wenn zuvor auf dem Master ein S-Bus Gateway definiert wurde)

5. Modems

Dieses Kapitel handelt von Modems, welche am öffentlichen Telefonnetz (Public Telephone Network, PSTN) angeschlossen werden können. Diese Modems werden Public Line Modems (PLM) genannt.

DTE: Data Terminal Equipment (Datenendgeräte)

DCE: Data Communication Equipment (Datenübertragungsgeräte)

5.1 Datenübertragungsraten

Datenübertragungsraten werden in der ITU-T (International Telecommunication Union - Telecommunication Standardization Sector) Norm definiert. Zuvor hatte die ITU den Namen CCITT.

Die wichtigsten damit definierten Modem-Kommunikationsnormen sind:

ITU-T V.21	300 Baud
ITU-T V.22	1'200 Baud
ITU-T V.23	1'200/75 Baud
ITU-T V.22bis	2'400 Baud
ITU-T V.32	4'800 und 9'600 Baud
ITU-T V.32bis	4'800, 7'200, 9'600, 12'000 und 14'400 Baud
ITU-T V.34	33'600 Baud
ITU-T V.42	Error control MNP (Microcom Networking Protocol)
	MNP 2-4 für V.22, V.22bis, V.32 und V32bis Modems
ITU-T V.42bis	Datenkompression für V.42 Modems
ITU-T V.90	56'000 Baud
ITU-T V.110	Synchrone Bitratenadaption für ISDN ohne Fehlerkor-
ITU-T V.120	rektur. 600, 1'200, 2'400, 4'800, 7'200, 9'600, 12'000, 14'400, 19'200, 48'000 und 56'000 Baud Synchrone und Asynchrone Bitratenadaption für ISDN mit Fehlerkorrektur. Baudraten gleich wie V.110
V.32terbo	19'200 Baud, nur von wenigen Modemherstellern un- terstützt
V.Fast	28'800 Baud
MNP 5	Datenkompression mit V.42bis nicht kompatibel

Weiter gibt es herstellerspezifische, nicht standardisierte Kommunikationsprotokolle wie zum Beispiel CODEX V.Fast für 24'000 Baud von Motorola.

Fax Normen

ITU-T	V.27ter	4'800 Baud
ITU-T	V.29	9'600 Baud (auch von vielen Fax-Modems unterstützt)
ITU-T	V.17	14'400 Baud

Die praktisch verwendbare Übertragungsrate hängt von

- dem eingesetzten Modemtyp und
- der Qualität der Telefonlinie ab.

Im Prinzip ist für die Kommunikation zwischen PG4 und PCD jede Kombination von Modemtypen vorstellbar. Das heisst, dass ein schnelles V.32bis Modem mit einem langsamen V.22bis Modem kommunizieren kann, wobei das schnellere Modem automatisch seine Übertragungsrate an diejenige des langsameren Modems anpassen wird.

Damit dies möglich ist, müssen im schnelleren Modem folgende Parameter gesetzt werden:

• Speichern der Übertragungsrate (speed buffering) und Standard-Modus (normal mode) müssen eingeschaltet sein.

PG4-Modem oder PCD-Modem (DTE-DCE) Übertragungsraten

Das PG4 und die PCD unterstützen DTE Baudraten bis zu 38'400 Baud. Die Baudraten zwischen PG4-Modems und zwischen PCD-Modems können verschieden sein.

Damit dies möglich ist, müssen in den Modems folgende Parameter gesetzt werden:

- Automatische Anpassung der Übertragungsraten für die DTE Schnittstelle muss ausgeschaltet sein.
- Speichern der Übertragungsrate (speed buffering) muss eingeschaltet sein.

Bemerkungen:

- Wenn das PG4 eine höhere Baudrate verwendet als die PCD, muss das S-Bus Timeout im PG4 für tiefere Baudraten angepasst werden.
- Schnelle Modems verlangen gepufferte UARTs im PC. Ein alter AT (286) oder XT wird möglicherweise bei 38'400 Baud nicht funktionieren.

5.2 Betrieb des eigenen Modems

Das vorliegende Modem kann auf zwei Arten betrieben werden, mit dem Command-Modus und dem Daten-Modus.

- Der Command-Modus erlaubt Anweisungen in Form von Befehlen an das eigene Modem zu senden und ermöglicht so eine Vielzahl von Funktionen auszuführen.
- Der Daten-Modus erlaubt den Datenaustausch über eine Telefonlinie mit einem entfernt installierten Gerät. Bei diesem Betriebsmodus nimmt das eigene Modem an, dass alle vom Computer empfangenen Informationen Daten sind und überträgt diese über die Telefonlinie an das entfernt installierte Gerät. Aus diesem Grund ist es nicht möglich, einen Modem-Befehl auszugeben, wenn das eigene Modem im Daten-Modus betrieben wird.

DTRverloren (&D3)

5.2.1 AT-Befehle

AT Befehle werden dazu verwendet, Modemparameter zu setzen oder zu ändern.

Basis AT-Befehle (Original AT command set)

Diese Norm wurde für das Hayes-Smart Modem 1200 implementiert und beschreibt die sogenannten "one character commands" wie beispielsweise ATD für die Selbstwahl oder ATH für das Aufhängen. Diese Norm wird von allen Hayes kompatiblen Modems verwendet.

Erweiterte AT-Befehle (Extended AT command set)

Hier handelt es sich um eine Norm für V22bis Modems. Die Referenz stellt wiederum das Hayes-Smart Modem 2400 dar. Die Basisbefehle sind mittels sogenannter "& commands" erweitert worden.

Übergeordnete AT-Befehle (Superset AT command set)

Diese Befehle basieren auf dem erweiterten Befehlssatz und unterstützen neue Funktionen für Hochgeschwindigkeitsmodems (V.32 und V.32bis). Solche Funktionen sind zum Beispiel Datenkompression (AT%C) oder Fehlerüberwachung (AT\N). Es existieren für diese übergeordneten Befehle allerdings keine einheitlichen Normen. Die Bedeutung dieser Befehle kann von Modemlieferant zu Modemlieferant verschieden sein.

Die Hayes-Kompatibilität ist nur für Befehle gültig, welche der V.22bis Norm entsprechen.

Profile der Konfigurationsparameter

• Anwenderspezifische Profile

Die Modems sind mit einem permanenten Speicher ausgerüstet, welcher das Abspeichern von einem oder mehreren anwenderspezifischen Konfigurationsprofilen und Telefonnummern ermöglicht. Die aktiven Profile werden mittels des AT&W-Befehls abgespeichert. Die gespeicherten anwenderspezifischen Profile werden mit dem ATZ-Befehl aktiviert.

• <u>Standardprofile (ab Werk eingestellt)</u>

Jedes Modem besitzt ein oder mehrere ab Werk eingestellte Standardprofile, welche permanent im ROM-Speicher abgelegt sind. Diese Daten können vom Anwender nicht modifiziert werden. Diese Standardprofile können mittels des AT&F-Befehls aktiviert werden.

Anzeige und Änderung von Modemparametern

Modemparameter können nur dann modifiziert werden, wenn sich das Modem im Command-Modus befindet. Mittels eines Bildschirm-Emulationsprogrammes können die Modemparameter angezeigt oder abgeändert werden.

Das Eingabeformat dieses Befehls sieht folgendermassen aus:

AT command1 [command2] [...commandn] <CR> (max. 40 Characters)

Das Modem gibt die eingegebenen Zeichen einzeln zurück, solange dies nicht durch den Befehl

ATE0 <CR>

unterbunden wird. Dieser Befehl wird bei der Initialisierung des Modems durch die PCD ausgeführt.

Das Modem schickt nach dem Einlesen der Befehlszeile einen Antwort-Code zurück (falls so definiert):

OK	wenn der Befehl ausgeführt worden ist
ERROR	im Fall eines ungültigen Befehls

Das aktive Profil und die Anwenderprofile können mittels des folgenden Befehls angezeigt werden:

> AT&V (bei US-Robotics Modems wird der Befehl ATI4 verwendet)

5.2.2 Wichtige Konfigurationsparameter für PG4 und PCD-Modems

Die unten aufgeführte Liste zeigt ein Beispiel eines funktionierenden Modem Setups. Diese Liste stammt von einem durchgeführten Test mit einem V.32bis Modem Typ 'US Robotics Courrier' her. Derselbe Modemtyp wurde für das PG4 sowie die PCD verwendet.

Wird ein anderer Modemtyp eingesetzt, kann es sein, dass die erweiterten HAYES-Befehle nicht 100% identisch mit den weiter unten aufgeführten Anweisungen sind. Es ist deshalb anzuraten, das spezifische Modem-Handbuch zu Rate zu ziehen, um sich zu vergewissern, dass diese Befehle auf dem Modem dieselben Auswirkungen zeigen.

Sind dieselben Befehle nicht vorhanden, sollen gleichwertige Befehle durch Vergleich der Beschreibungen ausfindig gemacht werden.

AT Befehle für das US Robotics Courier V.32bis Modem: Bitte folgende Punkte beachten:

- Die fettgeschriebenen Befehle sind für ein korrektes Funktionieren unerlässlich.
- Befehle zwischen () haben auf die Wirkungsweise keinen Einfluss.
- Befehle in Normalschrift sind nicht speziell untersucht worden und sollten, wie in der Liste angegeben, eingesetzt werden.

PG4	PCD	Beschreibung
Modem	Modem	
B0	B0	Handshake Optionen ITU-T Norm V.32
E1	EO	Lokales Echo: PG4 \rightarrow eingeschaltet, PCD \rightarrow ausgeschaltet
F1	F1	Lokales Echo OFF sobald die Verbindung hergestellt worden
		ist
(L2)	(L2)	Keine Funktion für dieses Modem,
		für andere Modems entspricht dieser Befehl der Lautstärke-
		Einstellung des Lautsprechers
(M1)	(M0)	M0: Lautsprecher ausgeschaltet
		M1: Lautsprecher eingeschaltet bis Träger detektiert worden ist
Q0	Q0	Resultat-Code Rückmeldung
V 1	V 1	Anzeige des Resultat-Codes in Wortform (zum Beispiel "OK",
		"CONNECT",)
X4	X4	Gibt einfache Codes betreffend des Fortschreitens des Anrufs,
		Übertragungsraten, Detektion des Besetztzeichens und des
		Wähltons
&A3	&A3	Anzeige des Protokolls des Resultat-Codes
&B1	&B1	DTE - DCE Übertragungsrate unabhängig von DCE - DCE
		Übertragungsrate (feste DTE Übertragungsrate)
&C1	&C1	Track Status des Trägerdetektionssignals (DCD)

PG4 Modem	PCD Modem	Beschreibung
& DO	& DO	& D0. ignoriant DTP Signal (varlangt aiganan Aufhänga String
adar D2	adar D2	a der Detei 'medern det')
oder D2	oder D2	III der Dater modern.dat)
		&D2: Monitor D1R Signal. Fur einen On-to-Off Übergang des
		DIR hangt das Modem auf und geht in den Command Status
		über.
&G0	&G0	Kein Guardton
&H0	&H0	Sendeflusskontrolle ausgeschaltet (CTS)
&I0	&I0	Empfangsflusskontrolle ausgeschaltet Break /
&K0	&K0	Datenkompression ausgeschaltet Paritiy
&L0	&L0	Normalbetrieb Telefonlinie
&M0	&M0	Normaler Modus, Fehlerkorrektur ausgeschaltet
&N0	&N0	Auto-Modus for DCE - DCE speed
		Variable Übertragungsrate. Modem einigt sich mit dem andern
		Modem auf die höchstmögliche gemeinsame Übertragungsrate.
&P0	&P0	Intervall-Verhältnis bei Pulswahl: USA/CAN/D
&R1	&R1	RTS ignorieren
&S0	&S0	DSR Simulation, immer eingeschaltet
&T5	&T5	Verhinderung von RDL (Fern-Digitalrückkopplung)
&X0	&X0	Quelle Synchronzeit
&Y3	&Y3	Handhabung der Unterbrechungen (Breaks).
		Nur Breakmodus
		(Nichtdestruktiv, wird nicht weitergeleitet).
&N6	&N6	Übertragungsrate: 9600 Baud

Zusammenfassung der wichtigsten Modem-Funktionen, welche für S-Bus PGU gesetzt werden müssen

- Datenkompression muss ausgeschaltet sein (bei Break-und Parity-Modus)
- Fehlererkennung muss abgeschaltet sein (bei Break- und Parity-Modus)
- RTS/CTS Datenflusskontrolle muss ausgeschaltet sein
- DSR muss immer eingeschaltet sein
- BREAK Charakter müssen in der Sequenz mit den empfangenen Daten übertragen werden (nur Break-Modus)

5.2.3 Konfigurierung der PCD Utilities für das eigene Modem

Die PCD-Utilities enthalten einige Standardkonfigurationen für das Modem:

- Hayeskompatibel
- Hayeskompatibel für hohe Übertragungsraten
- US Robotics Courier
- Zyxel Serie U-1496
- Miracom WS 3000
- Anwenderdefinierte Modems

Mittels des "Define Modems" Untermenüs im Hauptmenü "Online" im "Project Manager" sind die verschiedenen Modems und die von diesen verwendeten Befehle ersichtlich.

Die Einträge der Modemparameter in diesem Menüpunkt nehmen immer Bezug auf das Modem, welches am PC angeschlossen ist.

Alle Einträge werden in der Datei "spgmodm.ini" im Verzeichnis "Windows" abgespeichert.

Modem List 🛛 🗙	
USR Spor V 33.6 data Zoom Fax Modem Zyxel U-1496 data	
<u>E</u> dit <u>A</u> dd <u>R</u> emove <u>H</u> elp <u>C</u> lose	

In der 'Modem List' werden alle bekannten Modems aufgelistet. Bestehende Modems werden mit dem Knopf "Edit" angezeigt. Mit dem Knopf "Add" werden neue Modems hinzugefügt, mit dem Knopf "Remove" bestehende Modems gelöscht.

Modem Setup	×
Modem <u>N</u> ame: USR Courier	OK
Modem Command Strings	Cancel
Reset modem: ATZ\r	
Initialize modem: AT&F1X4&H0&K0&M0&R1&Y3&W\r	Defaults
Dial command Prefix: ATDT	
Dial command Suffix: Vr	
Hangup command: ATH0\r	
Auto-answer on: ATS0=1\r	
Auto-answer off: ATS0=0\r	
Select command Mode:	
500ms d <u>e</u> lay character: 🦳	
Modem Responses]
<u>O</u> k response: OK	
Connected response: CONNECT	
S-BUS Signalling Modes	
Break mode (S <u>0</u>): ▼ Data mode (S <u>2</u>): ■ Parity mode (S <u>1</u>): ■	Help

Nach der Betätigung des "Edit" Knopfes ist folgendes Fenster sichtbar:

<u>R</u> eset Modem	Setzt das Modem auf den ab Werk eingestellten Stan- dardstatus
<u>I</u> nitialize Modem	Initialisiert das Modem: Setzt Timeouts, schaltet Feh- lererkennung bei Datenkompression aus, schaltet De- tektion des Aufbaus der Verbindung aus, usw
Dial command <u>P</u> refix	Wird vor der eigentlichen Wahl der Telefonnummer gesendet.
Dial command <u>S</u> uffix	Wird nach der eigentlichen Wahl der Telefonnummer gesendet. Normalerweise "\r" (CR).
<u>H</u> angup command	Dieser Befehl schaltet die Linie ab und hängt auf. Wenn leer, wird angenommen, dass das Zurückschalten von DTR (Data Terminal Ready) nach einigen Sekun- den die Linie aufhängen wird, wie bei hayeskompati- blen Modems.

<u>A</u> uto-answer on	Dieser String schaltet das Modem in den Auto-Answer- Modus, damit ein ankommender Anruf sofort beant- wortet und die Verbindung zum entfernt installierten Modem aufgebaut wird. Dieser Befehl wird dazu ver- wendet, den "auto-answer mode" einzuschalten. Dieser String ladet normalerweise ein Register als Klingelzei- chenzähler in das Modem (S0). Wenn der Klingelzei- chenzähler nicht Null ist, beantwortet das Modem einen Anruf nach Ablauf der voreingestellten Anzahl Klingel- zeichen.
Auto-answer o <u>f</u> f	Dieser String schaltet den Auto-Answer-Modus aus, womit das Modem einen hereinkommenden Anruf nicht automatisch beantworten wird. Dieser String setzt nor- malerweise das Register des Klingelzeichenzählers (S0) auf 0.
Select command <u>M</u> ode	Dieser Befehl schaltet das Modem vom Daten-Transfer zum Command-Modus um. Vor und nach dem "+++"- String ist eine Zeitverzögerung von 1.5 Sekunden pro- grammiert, welche durch drei 0.5 Sekunden Verzöge- rungs-Zeichen "~~~" definiert ist.
500ms d <u>e</u> lay character	Ist ein spezielles Blindzeichen. Wenn dieses Zeichen in einem Modem-Befehlstring erscheint, wartet das Sy- stem während 500 ms bevor das Zeichen zum Modem übertragen wird. Normalerweise wird das Wiederho- lungszeichen (~), dazu verwendet. Dieses Zeichen ist auch im Beispiel "Command" zu finden.
<u>O</u> k response	String, welcher vom Modem bei angenommenem Be- fehl zurückgeschickt wird. Dieser String wird zurückge- schickt, wenn die Befehle "Reset", "Init" oder "Han- gup" gesendet worden sind.
<u>C</u> onnected response	String, welcher vom Modem nach einer erfolgreichen Wahl vom entfernt installierten Modem zurückkommt.

S-BUS	Mit diesen Parametern kann definiert werden, welche
Signalling	S-Bus Protokolle das Modem unterstützt. Dabei können
Modes :	mehrere S-Bus Protokolle ausgewählt werden. Das PG4
	wird bei einer S-Bus Verbindung via Modem versu-
- Break mode	chen, mit allen ausgewählten S-Bus Protokollen eine
- Data mode	Verbindung zur PCD herzustellen. Sobald das richtige
- Parity mode	S-Bus Protokoll gefunden worden ist, wird die S-Bus
	Verbindung hergestellt. Um die S-Bus Verbindung zu
	beschleunigen oder unerwünschte Nebeneffekte im
	Modem zu vermeiden, sollte nur das gewünschte S-Bus
	Protokoll eingeschaltet werden. Das zuletzt angewählte
	S-Bus Protokoll wird bei einer neuen S-Bus Verbindung
	als erstes Protokoll angewendet

Modemstrings können Escape-Sequenzen für Standard-ASCII Kontrolzeichen oder Hex-Werte beinhalten. Diese werden von einem Backslash '\' eingeleitet:

\r	0x0D	CR	Wagenrücklauf (Carriage Return)
$\setminus n$	0x0A	LF	Zeilenvorschaltung (Line Feed)
∖a	0x07	BEL	Klingelzeichen (bell)
$\setminus b$	0x08	BS	Rückwärtsschrittzeichen (Backspace)
\mathbf{f}	0x0C	FF	Formularvorschub (Form Feed)
\t	0x09	HT	Tabulator
\mathbf{v}	0x0B	VT	Vertikaler Tabulator
\mathbf{h}	0xhh		hex value \x00\xFF
//	0x5C	\	Backslash
\"	0x22	"	Anführungszeichen

Antwortstring des Modems (Ok response und Connected response):

"Ok response" und "Connected response" Antwortstrings werden von den CR/LF Zeichen begrenzt. CR und LF müssen NICHT in die Stringdefinitionen einbezogen werden. Dasselbe gilt für '\n' und '\r'. Einzig die Zeichen, welche in "Ok response" oder "Connected response" eingegeben werden, mit Ausnahme der abgrenzenden CR/LF werden verglichen. Wenn die Antwort länger ausfällt, werden die zusätzlichen Zeichen ignoriert.

Z.B. entspricht "CONNECT" dem "<CR><LF>CONNECT 2400 <CR><LF>", das "<CR><LF>" und " 2400" werden nicht beachtet.

Das Modem soll nicht initialisiert werden, um Resultatcodes mit der Länge eines einzelnen Zeichens (zum Beispiel "0") zurückzuschicken, da dies nicht funktionieren wird. Stringwerte, umgeben von CR/LF Zeichen, müssen zurückgesendet werden (siehe auch Hayes-Befehl "V1"). Das Modem soll nicht so initialisiert werden, dass es keine Antwortstrings zurückschickt. Antwortstrings werden beim Anwählen der Telefonnummer benötigt, um den Aufbau der Verbindung zu überwachen (siehe auch Hayes-Befehl "Q0").

Hochgeschwindigkeitsmodems mit Datenkompression und Fehlerkorrektur

Datenkompression und Fehlerkorrektur sind <u>micht kompatibel</u> mit dem S-Bus Break- und Parity-Mode und müssen abgeschaltet werden. Normalerweise wird der Hayes-Befehl "&Q0" dies erreichen. Am besten wird Init="AT&Q0\r" verwendet (oder ein vordefinierter Modemtyp [Hayes Compatible High-Speed]).

Detektion des Aufbaus der Verbindung (Call progress detection)

Einige Modems sind in der Lage ausfindig zu machen, ob die Linie besetzt ist oder ob kein Summton vorhanden ist. In solchen Fällen wird angeraten, diese Funktionen mit dem "Init" String zu aktivieren. Damit wird die Wiederwahl schneller ausgeführt, da der Zustand der Linie und kein Abwarten von abgelaufenen Timeouts verwendet werden.

5.2.4 PCD und Modem

Die Initialisierungeinstellungen für das Modem, welches an der PCD angeschlossen wird, werden im Menüpunkt "Offline Configurator" in "Project Manager" definiert.

🦉 pg4 - SALA Project Manager	_ 🗆 ×
Eile <u>View</u> Besource <u>Project</u> <u>Online</u> <u>Iools</u> <u>Help</u>	
	1
Current Working Directory: C:\program tites\said-burgets\pg4	

🛋 pg4 - SAIA PCD Configuration File Editor 📃 🔲 🔀		
<u>File O</u> nline <u>H</u> elp		
Description:	Options	
J	Manual Memory Allocation 🔲 Memory	
PCD Type: Number of CPUs: PCD1 I	S- <u>B</u> US Support 🔽 <u>S</u> -BUS	
Code/Text Memory Size:	Has Gateway Port 🔲 🚊ateway	
64K Bytes, RAM/EPROM	Public Line Modern 🔽 Modern	
Extension Memory Size: EPROM Size: None	Password Protection	
Program <u>N</u> ames	Help E <u>x</u> it	

Dabei muss die Option "S-Bus Support" und "Public Line Modem" gewählt sein.

Nach Betätigung des Knopfes "Modem" erscheint folgendes Auswahlfenster:

Public-line Modem on PGU Port		×
Modem name:	OK	ו
Hayes Compatible	Cancel	
Modem <u>S</u> etup <u>N</u> ew modem	Help	

Ein bestehendes Modem kann mit der Taste "Pfeil nach unten" ausgewählt werden:

Public-line Modem on PGU Port	×
Modem name:	ОК
Hayes Compatible	Canaal
Haves Compatible	Lancel
Hayes Compatible High Speed	
ISDN Stollmann TA+PPP data	Help
Siemens M2U	
User-defined Modem	

Fenster, welches erscheint nachdem der Knopf "Modem Setup..." betätigt wurde:

PGU Port Modem Setup	×
Modem name:	
Hayes Compatible	Canaal
<u>R</u> eset modem:	Cancer
ATZ\r	<u>D</u> efaults
Initialize modem:	
ATM0E0S0=2S25=250\r	Help

<u>R</u>eset modem Reset String für das Modem.

Initialize Setzt das Modem in den Auto-Answer-Modus, sodass modem automatisch die ankommenden Anrufe beantwortet werden. Dieser String sollte auch die "DTR detect time" auf einen Wert grösser als 250 ms setzen. Dies verhindert, dass das Modem die Linie bei der Ausführung von "restart" aufhängt.

5.2.5 Ablaufsequenz des Modems in der PCD

Wenn das Modem an eine RS232 Schnittstelle angeschlossen ist, werden die nachfolgend gezeigten Schritte von der PCD ausgeführt. Unter Verwendung der Programmier-Utilities, muss die Schnittstelle zum Modem vorgängig als "S-Bus PGU with public line modem" konfigurieren werden.

- 1. Das Modem wird in den Befehlstatus gesetzt indem die Escape-Sequenz "+++" gesendet wird.
- 2. Das Modem wird zurückgesetzt und das Anwenderprofil 0 wird durch senden des Befehlstrings (normalerweise "ATZ") zurückgerufen.

3. Der String "initialise modem" wird gesendet. Normalerweise:

E0:	Lokales Echo ausgeschaltet.
M0:	Lautsprecher ist ausgeschaltet.
S0 = 002	Setze Modem in Auto-Answer-Modus. Nach 2 Klingelzeichen beantwortet das Modem den An- ruf automatisch.
S25 = 250	DTR ändert die Detektionszeit.

Es soll sichergestellt werden, dass das Modem das Register S25 akzeptiert und dass dessen Bedeutung dieselbe ist wie oben beschrieben. Sollte dies nicht zutreffen, kann versucht werden, mit ausgeschaltetem DTR-Signal zu arbeiten. (ignoriere DTR Signal "&D0"). Notizen

5.3 Verbindung über das öffentliche Telefonnetz

5.3.1 Aufbau

DTE: Data Terminal Equipment (Datenendgeräte)

DCE: Data Communication Equipment (Datenübertragungsgeräte)

Kabel

PCD-Schnittstellen, welche S-Bus PGU mit Modems unterstützen

Der PGU-Schnittstelle (PGU-Port) auf der PCD fehlen einige wichtige Signale, welche ein Verwenden von Modems für öffentliche Telefonnetze auf diesem Port unmöglich machen. Die PCD verlangt 5 Kontrollsignale (RTS, CTS, DTR, DSR, DCD) zur Steuerung des Modems.

RTS	REQUEST TO SEND
CTS	CLEAR TO SEND
DTR	DATA TERMINAL READY
DSR	DATA SET READY
DCD	DATA CARRIER DETECT

Folgende Ports unterstützen die S-Bus PGU mit den Modems:

PCD1.M120/M130:	Port 1 (RS 232)	
PCD2:	Port 1 (RS 232)	
PCD4:	Port 1 (RS 232)	mit Busmodul PCD4.C120 oder C340
PCD6.M540:	Port 2 (RS 232)	
PCD6.M1/2:	alle RS 232 Ports	(03)
PCD6.M300:	alle RS 232 Ports	(03)

5.3.2 Konfigurierung der PCD

- 1. RS232-Port des PC mit der PCD-PGU Schnittstelle verbinden.
- 2. Im "Project Manager" den "Online Configurator" aufstarten.

<i>體</i> Manual1 - SA	IA Project Manager	
<u>F</u> ile ⊻iew <u>R</u> eso	urce <u>P</u> roject <u>O</u> nline <u>T</u> ools <u>H</u> elp	
	e I Reixe I E E	2
Current Working	Directory: C. program nies (sala ourgess) pg	14\p
X SAIA PCD Or	line Configurator 9:56:27am 5 9	R B C _ 🗆 🗙
<u>File O</u> nline <u>S</u> ett	ings <u>H</u> elp	
<u>M</u> emory	PCD Type: PCD1.M1_ Version: 006	<u>G</u> o Offline
S- <u>B</u> US	Program Name: MANUAL1 Date: 2/8/99 Day: 1	Op <u>t</u> ions
<u>C</u> lock	Time: 9:56:25 Week: 31 Status: Run	Ope <u>n</u> File
History	CPU: 0 Baud: 9600	Help
Password	Station: 23 Protocol: PGU (S-BUS)	E <u>x</u> it

3. Auswahl von "S-Bus"

S-BUS Con	figuration				×
S-BUS-				OK	1
☑ S- <u>B</u> U:	5 Support	<u>S</u> -B	US		
Gateway	PCD1 S-BUS C	onfiguratio	n		×
∏ <u>H</u> ast	S-BUS <u>S</u> tatio	n Number: 🛛	15		ОК
Public Lir	PGU <u>P</u> o	t Number:	1 💌		Cancel
∏ <u>U</u> ses	PGU Port B	aud Rate: 🛛	9600 💌		
Modem <u>I</u>	S-B <u>I</u>	JS Mode:	Data (S2)	-	
	-S-BUS Timing				
	Training Seq	uence <u>D</u> elay	(TS): 0	ms	
	<u>T</u> urna	round Delay	(TN): 0	ms	
	В	esponse Tim	ieout: 0	ms	Help

• Stationsnummer an PCD vergeben (0 ... 254)

- PGU-Port bestimmen, welches mit dem Modem verwendet werden soll
 <u>Merke</u>: das Port 0 kann im Zusammenhang mit einem Modem nicht verwendet werden
- Baudrate für das eigene Modem wählen
- S-Bus-Modus: Break oder Data wählen
- Mit OK-Taste bestätigen
- 4. Auswahl des Modems welches an die PCD angeschlossen wird.

S-BUS Configuration		×
S-BUS ✓ S- <u>B</u> US Support	<u>S</u> -BUS	OK
Gateway Las Gateway Port	<u>G</u> ateway	
Public Line Modem Uses Public Line Modem Modem <u>N</u> ame:	Modem	
Factory Default Factory Default GSM Nokia 8110 data		<u>H</u> elp
GSM Siemens S4 data Hayes Compatible Hayes Compatible High Speed	•	

- Mit dem Knopf "Modem" können die Reset- und Initialsierungsstrings des ausgewählten Modems verifiziert werden.
- Mit OK-Taste bestätigen

-BUS Configuration		×
S-BUS	<u>s</u> -BUS	OK Cancel
Gateway <u>H</u> as Gateway Port	<u>G</u> ateway	
Public Line Modem ✓ Uses Public Line Modem Modem Name:	Modem	43
USR Spor V 33.6 data	•	<u>H</u> elp

5. Laden der Konfiguration in die PCD durch Betätigung des Knopfes 'OK'.

5.3.3 Konfigurierung des PC (PG4)

1. Im "Project Manager" das Untermenü "Connection Options" im Menü Online wählen:

2. Auswahl von "S-Bus dial-up modem connection", bei "Channel name":

Connection Options	×
Channel	ОК
PGU direct connection Setup	Cancel
S-BUS PC/104 S-BUS auto-answer mode	Help

Connection Options	×
Channel	
Channel name:	
S-BUS dial-up modem connection Setup	Cancel
COM1, S-BUS Modem, 9600, Zyxel U-1496 data	
CPU Number: 0 S-BUS Station: 15 🔽 Auto	Help
- Modem Dialler	
Ielephone number:	
0,0266727509 <u>D</u> ial	
Don't hangup: 🔽 Phonebook Hangup	

3. Mit dem Knopf "Setup" können das Port, die Baudrate, das Modem und die Timing Parameter verändert werden:

Communication	ns Channel Setup	×
<u>C</u> hannel name:	S-BUS dial-up modem connection	OK
<u>P</u> rotocol:	S-BUS Modem 💌	Cincel
<u>B</u> TS:	Toggle 💌	Help
P <u>o</u> rt:	COM1 Baud rate: 9600	
		<u>I</u> iming
Mo <u>d</u> em Name:	Zyxel U-1496 data	<u>M</u> odem

4. Bei Bedarf können die Timing Parameter mit dem Knopf "Timing" angepasst werden:

Solange keine Verbindungsprobleme auftreten, ist es nicht ratsam, Standardparameter der S-Bus Zeiteinstellungen zu ändern.

S-BUS Timing		×
Training <u>S</u> equence delay (TS): 0 <u>T</u> urnaround delay (TN): 0 <u>R</u> esponse timeout: 1200	ms ms ms	OK Cancel
<u>B</u> reak length: 1	chars	Help
Public Line Modern Timing Dial timeout: 90 Hangup timeout: 90	seconds minutes	5
Number of diel Debies	minacos	
Number of dial <u>R</u> etries: J2		

Training	Training Sequence Delay, in Millisekunden. Dies ent-
Sequence	spricht der Zeitverzögerung zwischen dem Setzen des
delay (TS)	RTS (Request To Send) und der Meldungsübermittlung.
<u>T</u> urnaround delay (TN)	Turnaround-Zeit in Millisekunden. Minimalzeit zwischen dem Ende einer Antwort und der Übermittlung des nächsten Telegramms. In dieser Zeitspanne kann die entfernt installierte Station auf Empfangsmodus zurück- schalten. Das TN delay ist speziell bei Einsatz vom PCD7.T100-Repeatern oder von PLMs wichtig.

<u>R</u> esponse	Response time-out in Millisekunden. Dies entspricht
timeout	dem Timeout bis zum Empfangsende der Meldung.
<u>B</u> reak length	Die "Break length" ist die Länge des Breaksignals in Zeiteinheiten, welche der Übermittlung eines einzelnen Zeichens entsprechen. Das Breaksignal meldet der ent- fernt installierten Station, dass ein neues Telegramm ge- sendet wird. Die Standardeinstellung entspricht der Zeit, welche für die Übermittlung von 4 Zeichen benö- tigt wird. Gewisse Modems benötigen jedoch eine län- gere Zeit, um das Breaksignal zu registrieren. Norma- lerweise sollte diese Zeit nie grösser sein als 10, anson- sten der Datendurchlauf behindert wird.

Bemerkungen:TS delay, TN delay und Timeout sollten auf den tiefsten
erlaubten Wert gesetzt werden. Wenn der Wert (TS
delay + TN delay) grösser ist als 500 ms wird das "De-
bug" Programm <u>nicht funktionieren</u>. Die PCD wird alle
500ms abgefragt und die Bearbeitungszeit würde we-
sentlich verlängert. Das Timeout sollte also so kurz wie
möglich gewählt werden.

Das TN delay ist sehr kritisch, Timeout und TS delay sind normalerweise beide auf 0, d.h. Standardwerte werden verwendet. Das Antwort-Timeout entspricht der Zeit, während welcher der PC bis zum Start der Antwortmeldung warten wird. Diese Zeit wird auf die nächsten 55 ms aufgerundet, da die interne PC Uhr mit 55 ms getaktet ist. Nach Empfang des ersten Zeichens verwendet der PC ein Timeout zwischen den Zeichen von 55 ms.

<u>D</u> ial timeout	Zeit, welche nach der Wahl verstreicht, bis die Über- prüfung des Übertragungssignals (DCD) des entfernt in- stallierten Modems erfolgt.
	<u>Merke</u> : Das Modem besitzt oft selbst ein internes Time- out (normalerweise 30-45 Sekunden). Das Timeout wird nicht verwendet, wenn der interne Wert des Mo- dems einer kürzeren Zeitverzögerung entspricht.
	Um ein längeres Timeout programmieren zu können, muss der Wert des modeminternen Timeouts durch Hinzufügen des Befehls in die "Init" Sequenz geändert werden. Bei hayeskompatiblen Modems heisst dieser Befehl "S7=n", wobei "n" die Dauer des Timeouts in Sekunden darstellt. Für ein Timeout von 45 Sekunden wird der Befehl bei einem hayeskompatiblen Modem wie folgt aussehen:
	Init="ATS7=45 r "; setzt eine 45 Sekunden Zimeout Timeout=45
<u>H</u> angup timeout	Wartezeit in Minuten. Werden keine Telegramme übertragen so wird nach dieser Zeit die Modemverbin- dung unterbrochen.
	Dadurch werden hohe Telefongebühren vermieden, falls der Benützer vergisst, die Modemverbindung zu unterbrechen.
	Überwachungszeit ist nicht aktiv, wenn der Wert 0 ein- gegeben wird.
Number of dial <u>R</u> etries	Anzahl zusätzlicher Nach-Wahlen nach missglücktem ersten Versuch, eine Verbindung mit dem entfernt in- stallierten Modem herzustellen. Max. sind 3 Versuche möglich.

5.3.4 Aufbau der Verbindung

- 1. PCD und Modem miteinander verbinden. Die PCD muss nicht unbedingt programmiert sein.
- 2. Modem an das öffentliche Telefonnetz anschliessen.
- 3. Ein- und Abschaltsequenz durchführen, um sich der korrekten Initialisierung des Modems durch die PCD zu vergewissern.
- 4. Im "Online Configurator" im Menü "Online" "Connect options" eine "S-Bus dial-up modem connection" auswählen:

Connection Options	×
Channel	OK
Channel name:	
S-BUS dial-up modem connection Setup	Cancel
COM1, S-BUS Modem, 9600, Zyxel U-1496 data	
CPU Number: 0 S-BUS Station: 15 🔽 Auto	Help
Modem Dialler	
Telephone number:	
0,0266727509 <u>D</u> ial	
Don't hangup: 🔽 Phonebook Hangup	

- Eingegeben der CPU- und PCD-Stationsnummer
- Auswahl von "Auto". Dadurch liest der PC die S-Bus Nummer der PCD selbständig aus.
- Eingeben der Telefonnummer

Die Telefonnummer kann jede Zahl oder jedes Zeichen beinhalten, welches vom Modem unterstützt wird. HAYES Modems generieren mit ',' eine Pause von einer Sekunde. Die Telefonnummer kann aus einem andwender-editierbaren

Telefonbuch durch Betätigen der Taste "Phonebook" aufgerufen werden.

- Auswahl von "Don't hangup". Dadurch wird die Verbindungen bei einem Editor Wechsel nicht unterbrochen.
- Knopf "Dial" betätigen um eine Verbindung herzustellen.

Der PC startet mit der Initialisierung des Modems. Nach einigen Sekunden ertönt der Summton, der Wählprozess ist akustisch vernehmbar. Dieser kann durch Drücken der "Cancel" Knopfes unterbunden werden.

Die letzte Linie auf dem Fenster gibt Auskunft über das Voranschreiten des Verbindungsaufbaus.

Dialling Remote Modem 🛛 🛛 🔀	Dialling Remote Modem 🛛 🗙
Number: 0,0266727509 Dial attempt: 1 Remaining time: 90 Initializing modem	Number: 0,0266727509 Dial attempt: 1 Remaining time: 90 Dialling
Cancel	Cancel
Dialling Remote Modem 🛛 🗙	Dialling Remote Modem 🛛 🔀
Number: 0,0266727509 Dial attempt: 1 Remaining time: 89 Awaiting response	Number: 0,0266727509 Dial attempt: 1 Remaining time: 60 Response from modem:
Cancel	[Cancel]
Dialling Remote Modem 🛛 🛛 🗙	1
Number: 0,0266727509 Dial attempt: 1 Remaining time: 60 Remote carrier detected.	
Cancel	

Bei erfolgreich hergestellter Verbindung schalten die Utilities auf das Hauptmenü zurück. Ein * vor dem "Channel name" zeigt, dass diese Verbindung hergestellt wurde.

nnection Options	2
Channel	[
Channel name:	
* S-BUS dial-up modem connection 💌 Sgtup	Cancel
COM1, 5-BUS Modern, 9600, Zywel U-1496 data	
CPU Number: 0 S-BUS Station: 15 🔽 Auto	Help
Modem Dialler	
Lelephone number:	
0.0266727509 Dit/	
Dgn't hangup: 🔽 Elsensberk Hangup	

Nun kann jeder Editor online geschaltet werden.

Dabei ist in jedem Editor ersichtlich, dass es sich um eine S-Bus Modem Verbindung handelt:

• "Online Configurator"

📈 SAIA PCD Or	nline Configurator	
<u>File O</u> nline <u>S</u> ett	tings <u>H</u> elp	
<u>M</u> emory	PCD Type: PCD1.M1_ Version: 006	<u>G</u> o Offline
S- <u>B</u> US	Program Name: MANUAL1 Date: 4/8/99 Day: 3	Op <u>t</u> ions
<u>C</u> lock	Time: 14:00:55 Week: 31 Status: Run	Ope <u>n</u> File
History	CPU: 0 Baud: 9600	Help
Password	Station: 15 Protocol: S-BUS Modem	E <u>x</u> it

• "Debugger"

COMMUNICATIONS: S-B S-BUS MODE: Data (S	US Modem, 2)	9600	Baud,	COM1,	Station	n 15
DEFAULT BATCH FILE ON LINE RUNNING	"SBUG.DBA	" LOAI	DED			
Run Stop Display cOnnect broAdcast	Mrite B Quit	atch	Clear	rEsta	art Loo	sate

• "Fupla"

📅 SF	UP -	call_	pgu (Cl	0B 0] F	Page: 1/1	[Active	Modem]		
<u>F</u> ile <u>I</u>	<u>E</u> dit	⊻iew	P <u>ag</u> e	<u>M</u> ode	<u>R</u> esource	<u>P</u> roject	<u>O</u> nline	Options	<u>H</u> elp	
	5	X	àCł	k =	≨×€	18 7 °T		ا 🕮 🌢	5	a 🚱 🖲
			-							
<u> </u>					SA	SI Modo	m			
L								_		

5.3.5 Störungsbehebung

Problem 1: Das PCD-Modem gibt keine Antwort auf einen ankommenden Anruf.

Kontrolle, ob sich das Modem im Auto-Answer-Modus befindet:

- Leuchtet die LED auf der Frontplatte?
- Ist das Kabel korrekt angeschlossen?
- Ein- und Ausschalten des Gerätes und betrachten der Datenempfangs-LED des PCD-Modems. Es kann dabei festgestellt werden, ob die PCD die Initialisierungssequenz liefert.
- **Problem 2:** Nach erfolgter Wahl der Telefonnummer erscheint die Meldung "connected to remote modem". Ein Neuanwählen wird jedoch sofort wieder ausgeführt.

Kontrolle des Modem-Antwortstrings:

- Kontrolle der entsprechenden Antwortstrings in der Modem-Daten-Datei.
- Kontrolle der Modemparameter V1, W0, X4
- **Problem 3:** Nach Herstellung der Verbindung mit dem entfernt installierten Modem ist eine Online-Schaltung mit dem S-Bus Protokoll nicht möglich. Fehlermeldung im 'connect menu': "No response from PCD"
 - Kontrolle der S-Bus Stationsnummer
 - Wenn die DTE-Übertragungsrate des PCD-Modems tiefer ist als diejenige der DTE des PG4-Modems, dann muss der Wert des Timeouts PG4 der tieferen Rate angepasst werden.
 - Kontrolle der Parameter des Modem-Setups.
- **Problem 4:** Mittels der Programmlade-Utilities wurde die Konfigurierung auf einem S-Bus PGU-Port der PCD geändert (zum Beispiel wurde die Baudrate verändert). Das Modem war mit diesem Port verbunden, jedoch wurde der neue Wert nicht in Betracht gezogen.

Um eine modifizierte Konfigurierung zu aktivieren muss das Modem ausund wieder eingeschaltet werden. Das heisst, dass die neue Konfigurierung nicht in Betracht gezogen wird, während dem das Modem mit dem S-Bus PGU-Port verbunden ist.

Es ist jedoch möglich, dass das Modem aus irgend einem Grund nicht funktionieret. In solchen Fällen wird angeraten, einen seriellen Schnittstellenanalysator zwischen PG4 und Modem, oder zwischen PCD und Modem zu schalten (zum Beispiel SANALYS oder RSO). Damit können vom Modem gesendete und empfangene Telegramme analysiert werden.

5.3.6 Beendung einer Verbindung

Entweder im Menü "Online", "Hangup" auswählen:

1 N	lanual	1 - SAIA P	roject M	anager				
<u>F</u> ile	⊻iew	<u>R</u> esource	<u>P</u> roject	<u>O</u> nline	<u>T</u> ools	<u>H</u> elp		
D	2	196	1	<u>H</u> ar	igup		50	6
	arrent W	orking Direc	tory:	<u> </u>	Unline inection	Options	F9	 ijects\ma

Oder im Menü "Online", "Connections Options" den Knopf "Hangup" betätigen:

Connection Options	×
Channel	
Channel name:	
* S-BUS dial-up modem connection Setup	Cancel
COM1, S-BUS Modem, 9600, Zyxel U-1496 data	
CPU <u>N</u> umber: 0 S-BUS <u>S</u> tation: 15 🔽 Auto	Help
Modem Dialler	_
<u>I</u> elephone number:	
0,0266727509 <u>D</u> jal]
Don't hangup: 🔽 Phonebook Hangup	ł

Dabei erscheint in beiden Fällen die folgende Meldung auf dem Bildschirm:

Wenn vor dem Verlassen der PCD-Utilities vergessen wird die Verbindung abzubrechen, erfolgt der folgende Hinweis:

SPROJM	32 🛛 🔀
?	The modem is still active. Do you want to hangup ?
	es <u>N</u> o

Mit der Taste "Yes" wird die Modemverbindung unterbrochen. Mit der Taste "No" wird das PG4 beendet, ohne dass die Modemverbindung unterbrochen wird.

5.4 Modem +

Mit einem S-Bus Level 2 (S-Bus PGU), müssen keine SASI-Befehle ausgeführt werden. Alle Operationen werden ohne Eingriff des Anwenderprogramms von der Firmware der PCD ausgeführt. Es kann jedoch in gewissen Fällen notwendig sein, dass sich Anwenderprogramm und Firmware gegenseitig beeinflussen können:

- Der Anwender will wissen, wann die PCD mit dem entfernt installierten Modem oder mit der Programmiergerät online ist.
- Der Slave-PCD möchte den Master kontaktieren (zum Beispiel in einer Alarmsituation).
- Der Anwender will die Schnittstelle neu assignieren.
5.4.1 Diagnose (SASI DIAG)

Die SASI-Diagnose "DIAG SASI" erlaubt eine Verbindung zwischen dem S-Bus-Level 2 und dem Anwenderprogramm.

Mit dieser Funktion hat der Anwender die Möglichkeit, die Aktivitäten des S-Bus-Level 2 in seinem Anwenderprogramm zu beeinflussen.

Format:

TEXT xxxx	"DIAG	<pre>c<diag_elem>,<diag_reg>''</diag_reg></diag_elem></pre>
lem = F xxxx o	r O xxxx	(Basisadresse von 8 Flags oder
eg = R x x x x		(Adresse des Diagnose-Registers)
	TEXT xxxx lem = $F xxxx o$ eg = $R xxxx$	TEXT xxxx "DIAG lem = $F xxxx$ or $O xxxx$ eg = $R xxxx$

Beispiel:

SASI	1 100	; SASI Text 100 für Kanal Nummer 1 ; konfiguriert für S-Bus Level 2.
TEXT 100	"DIAG:F0,R0;"	; F0 bis F7 und R0 beinhalteen die; Standard-S-Bus Diagnose-; Informationen.

DIAG SASI wird gelöscht, wenn:

- ein RESTART COLD/WARM oder
- ein File Load-Befehl ausgeführt wird

5.4.2 SICL-Anweisungen

Für eine Schnittstelle, welche für S-Bus Level 2 und PLM konfiguriert ist, kann der Anwender das DCD Signal lesen, um ausfindig zu machen, ob die PCD mit einem entfernt installierten Modem online geschaltet ist oder nicht. Entsprechend dem Betriebszustand des DCD können verschiedene Codes im Anwenderprogramm ausführt werden. Siehe auch SICL-Befehle in Kapitel 3.9.

5.4.3 UNDO/REDO ein S-Bus PGU-Port (SASI OFF)

Die S-Bus PGU-Schnittstelle kann entassigniert (UNDO) und neue Assignierungen entsprechend anderen Kommunikationsnormen sowie nachträgliche Neu-Assignierungen können entsprechend S-Bus Level 2-Modus mit oder ohne Modeminitialisierung ausgeführt werden.

Mit der oben erwähnten UNDO/REDO Prozedur ist es der Slavestation möglich, die Masterstation via Modem anzurufen und dann zurück zum S-Bus Level 2-Modus zurückzuschalten.

Um einen SASI-Fehler zu verhindern und um korrekt auf einem S-Bus PGU-PLM Port arbeiten zu können, muss der Anwender vorerst ein "DIAG SASI" durchführen, damit die S-Bus PGU-Aktivität mit seinem Anwenderprogramm gekoppelt wird. Jetzt ist er in der Lage, mit dem Diagnose-Flag 'XBSY' des Anwenders zu arbeiten.

Eine Assignierung eines als S-Bus PGU-PLM konfigurierten Ports rückgängig zu machen, braucht der Anwender einzig den SASI OFF-Befehl auszuführen, wenn dies die Anwendung zulässt.

Format: **TEXT xxxx** "MODE:OFF,x,y,z;" wobei:

Х Ausführungsverzögerung eines UNDO/REDO von S-Bus PGU via PLM.

Einheit:	[Sekunden]
Bereich:	0300s
Standard:	0 s

Während dieser definierten Zeitspanne wird die UNDO/REDO Anforderung noch nicht ausgeführt und kann mittels der CPU oder eines "Restart Cold/Warm" der CPU gestoppt werden.

Timeout, welches erlaubt, nach dem SASI OFF eine andere Asу signierung für irgend einen Standard-Kommunikations-modus durchzuführen.

Einheit:	[Millisekunden]
Bereich:	05000ms, aufgerundet entsprechend
	Modulo 250 ms

Standard: 1000 ms

Nach Ablauf dieser Zeitspanne wird das Port automatisch für S-Bus PGU-PLM reassigniert. Das heisst, dass der Anwender für die UNDO Prozedur eine Assignierung durchführen muss, bevor diese Zeitspanne abgelaufen ist

- Option, welche es ermöglicht, ein REDO des S-Bus-Level 2-Modus Ζ mit oder ohne eine Modem-Neuinitialisierung durchzuführen. Wert:
 - 0 (mit Modem-Neuinitialisierung)
 - 1 (ohne Modem-Neuintialisierung)
 - 0 (mit Modem-Neuinitialisierung). Standard:

5.4.3.1 Übersicht aller SASI OFF Optionen für 'MODEM+':

Das Zeichen ';' am Ende des Texts ist immer optional und muss nicht definiert werden.

'MODE:OFF;"	alles Standardeinstellungen
'MODE:OFF,xxx;"	yyyy und $z = Standardeinstellung$
'MODE:OFF,xxx,yyyy;"	z = Standardeinstellung
'MODE:OFF,xxx,yyyy,z;"	keine Standardeinstellungen
'MODE:OFF,,yyyy,z;"	xxx = Standardeinstellung
'MODE:OFF,,,z;"	xxx and yyyy = Standardeinstellung
'MODE:OFF,,yyyy;"	xxx und z = Standardeinstellung
'MODE:OFF,xxx,,z;"	yyyy = Standardeinstellung

Beispiele:

"**MODE:OFF;**" Es wird keine (x,y,z) Option verwendet.

Dieses Format soll verwendet werden, um sofort ein UNDO des S-Bus PGU für PLM auszuführen.

Das XBSY-Flag geht sofort auf "L" und gibt an 'Permission for any standard assignation (except for another SASI OFF)'. Der Anwender muss nun eine Assignierung innerhalb einer Sekunde durchführen. Bei Ablauf dieser Zeitspanne wird das XBSY-Flag sofort "H" gesetzt und die Schnittstelle wird automatisch für S-Bus PGU-PLM reassigniert. Diese Möglichkeit kann dazu verwendet werden, die Init/Reset-Prozedur des angeschlossenen Modems neuzustarten. Der Hauptgrund für diese Prozedur ist das Zurückkehren in den Online-Modus. "MODE:OFF,xxx;" Option 'xxx': 0..300 Sekunden (Standard: 0s, keine Zeitverzögerung).

Dieses Format soll verwendet werden, um ein UNDO von S-Bus PGU-PLM nach einer gewissen Zeitspanne von xxx Sekunden durchzuführen.

Während dieser Dauer bleibt das XBSY-Flag "H" und gibt dem Anwender für den Moment eine 'NO SASI' Erlaubnis. Auch funktioniert der S-Bus PGU-PLM-Mechanismus wie gewohnt und verbleibt im momentanen Status. Aber eine Antwort auf eine 'Read Own PCD Status'-Anforderung pendelt während der Delay Time: (S-Bus und P8) wie nachfolgend gezeigt.

Beispiel: PG4 (PG3) fragt 'Read Status'-Anforderung ab (jede Sekunde):

PCD S-Bus Slave Antwort: Real Status ('R/C/S/H') oder 'X' ('X' bedeutet Exceptional Intermediate Status)

Diese Funktion kann speziell für eine PCD interessant sein, welche online mit einem entfernt istallierten Modem und der PG4 (PG3)-Utility ist:

Der Anwender kann visuell feststellen, dass die PCD in einem aussergewöhnlichen intermediären Status ist: solange die beschriebene SASI OFF Zeitverzögerung aktiv ist, hat der Anwender die Möglichkeit, die vorliegende, auf ihre Ausführung wartende UNDO Anforderung aufzuheben. Dies kann einfach bewerkstelligt werden, indem die PCD in den 'STOP (own)' oder 'RUN (own)' Status versetzt wird. Dabei werden die PG4 (PG3) Utilities mit dem S-Bus- oder dem P8-Protokoll verwendet.

Ein 'RESTART COLD/WARM' hat dieselbe Wirkung. Der Vorteil dieser Möglichkeit liegt darin, dass der Anwender aktiv und bei aussergewöhnlichen Situationen sofort eingreifen kann. Es kann auch verhindert werden, dass die PCD einen "HANG UP" nach Verstreichen der Zeitverzögerung ausführt. Mit anderen Worten ist es möglich, mit S-Bus Level 2 für Modems online zu bleiben. Der S-Bus Debugger der Utilities zeigt während des beschriebenen 'X'-Status abwechselnd das HANG UP-Timeout und den vorliegenden reellen PCD-Status an (Toggling).

Die Anzeige in der rechten Ecke des oberen Balkens zeigt folgende Informationen: 'HANG UP xxx SECS'. Der P8-Debugger der Utilities zeigt während des beschriebenen 'X'-Status eine spezielle Meldung sowie den vorliegenden, reellen PCD-Status. Die Anzeige in der rechten Ecke des oberen Balkens zeigt folgende Informationen: 'HANGING UP MODEM'. Nach Ablauf der Zeitverzögerung arbeitet das SASI OFF genau gleich wie oben beschrieben.

"MODE:OFF,[xxx],[yyyy],[z];"

Zusätzliche und optionale Parameter 'yyyy' und 'z'.

Die Hauptfunktionalitäten des SASI OFF bis UNDO bzw. REDO S-Bus mit PLM wurde schon detailliert in den obigen Formaten (1) und (2) beschrieben. Hier folgt nur eine zusätzliche Beschreibung der Optionen 'yyyy' und 'z':

Option 'yyyy': Einheit:	[Millisekunden]
Bereich:	05000 Millisekunden
Standard:	1000 Millisekunden

Das XBSY-Flag geht sofort auf "L" und gibt 'Permission for any standard assignation (except for another SASI OFF)' an. Der Anwender hat nun innerhalb von yyyy Millisekunden eine Assignierung durchzuführen (aufgerundet auf Modulo 250ms). Während dem Timeout verbleibt das DTR-Kontrollsignal hoch, dies um ein angeschlossenes Modem nicht zum Aufhängen zu zwingen. Bei Ablauf dieser Zeitspanne wird das XBSY-Flag sofort "H" gesetzt und die Schnittstelle wird automatisch für S-Bus PGU-PLM in Funktion der nächsten Option neu assigniert:

Option 'z':	Einheit:	(REDO-Modus)
	Bereich:	0 oder 1
	Standard:	0 (Redo-Modus mit Modeminit.)

Diese Option kann wie folgt dazu verwendet werden, den REDO-Modus zu definieren:

'z' := 0: REDO-Modus mit Modeminitialisierung.

Die Firmware startet die Init/Reset-Prozedur des angeschlossenen Modems von neuem und assigniert dann das entsprechende Port für S-Bus Level 2 für Modems.

Das heisst, dass sich das online befindende Modem wegen Neu-Programmierung des Auto-Answer-Modusses aufhängt.

Dies könnte ein grosser Nachteil für ein PC-Überwachungssystem darstellen, welches mit dem Modem und später mit einem S-Bus Level 2 online bleiben sollte. Aus diesem Grund kann der Parameter 'z' als 1 definiert werden:

'z' := 1 Assigniere S-Bus PGU-PLM direkt für S-Bus Level 2 ohne Neu-Initialisierung des angeschlossenen Modems.

Es sei daran erinnert, dass die PCD nur solange in S-Bus Level 2-Modus bleibt, als das DSR Signal (PCD-seitig) "H" bleibt. Wenn das Signal 0 = L wird, reinitialisiert die PCD das Modem automatisch und assigniert nachträglich den S-Bus PGU-PLM Port für S-Bus Level 2.

5.4.3.2 'REDO' Assignierung einer für S-Bus-PGU-PLM definierten seriellen Schnittstelle

Die Firmware wird die S-Bus PGU-Schnittstelle für S-Bus PGU in den folgenden Fällen mit PLM automatisch neu assignieren:

- nach einer Restart-Anforderung
- bei einem Power ON (Einschalten der Steuerung)
- nachdem der Anwender ein "SASI OFF" auf dem S-Bus PGU-Port ausgeführt hat
- wenn die CPU in HALT geht

Bemerkungen:

- Der Anwender ist dafür verantwortlich, dass ein 'MODE:OFF,xxx,yyyy,z;' ausgeführet wird, um mit dem S-Bus wieder on-line zu kommen.
- Dies funktioniert nur auf einem FULL RS232 Port.
- Spezielle Beachtung muss der Verwendung der UNDO/REDO Mechanismen für S-Bus PGU-PLM für eine PCD4.M240 und PCD4.M44x geschenkt werden:

Die verschiedenen Assignierungen wie SASI OFF, DIAG SASI und DIAG OFF dürfen in den Anwenderprogrammen der CPU 0 und/oder CPU 1 nicht vermischt werden. Die Zugriffserlaubnis ist von der momentanen "PG-owner-CPU" abhängig.

Es darf nicht vergessen werden, dass die "PG-owner-CPU" (CPU welche an das Programmiergerät angeschlossen ist) durch ein 'Connect CPU 0/1' über die PG4 (PG3)-Utilities gewechselt werden kann. Dies kann zu Problemen bei der Koordination eines Anwenderprogramms führen z.B. für die CPU 1 und der CPU welche momentan am Programmiergerät angeschlossen ist. Dies kann CPU 0 oder CPU 1 sein.

Wenn die Anschaltung ans Programmiergerät an eine andere CPU übergeht und eine UNDO-Anfrage unterwegs ist, wird die PCD diesen Job sofort abbrechen und in den aktuellen S-Bus PGU-PLM Status zurückkehren.

5.5 Beispiel eines PCD-Programmes

Dies ist ein Programmbeispiel, welches S-Bus Kommunikationen zwischen einer PCD und einem Leisystem oder dem Programmiergerät zeigt.

Die Kommunikation kann durch:

- die PCD (abgehender Anruf)
- das Leitsystem (ankommender Anruf)
- das PG4

eingeleitet werden. Dem Programm wurde in Fupla geschrieben.

Abgehender Anruf:

Um einen abgehenden Anruf einzuleiten, muss das Flag "Call_PGU" auf "H" gesetzt werden. Die PCD wird dann versuchen, eine Verbindung mit dem entfernt installierten PC herzustellen. Wenn dies erfolgreich verläuft, wird die PCD auf den S-Bus Slave-Modus umgeschaltet und kann dann vom Leitsystem abgefragt werden.

Nach dem erfolgreichen Verbindungsaufbau muss der zentrale Computer das unter der FBox "Call PGU", "Cnf" definierte Flag auf "H" setzen.

Dadurch ist eine zeitlich unlimitierte Kommunikation möglich.

Wird dieses Flag nicht auf "H" gesetzt, so wird die Modemverbindung nach Ablauf der unter der FBox "Call PGU" definierten Zeit "Confirm Timeout" unterbrochen.

Das Beenden der Modemverbindung erfolgt immer auf der Seite des zentralen Computers.

Bei einer erfolglosen oder unterbrochenen Verbindung wird der zentrale Computer nach einer gewissen Zeit "recal time" in der FBox "Call PGU" neu angerufen. Dies wird wiederholt, bis die, unter "recal count" in der FBox "Call PGU definierte Anzahl erreicht ist.

Im Fehlerfall wird der Ausgang "Err" der FBox "Call PGU" auf "H" gesetzt.

Der Ausgang "Con" der FBox "Call PGU" wird bei gültiger Verbindung auf "H" gesetzt.

Ankommender Anruf:

Die PCD beantwortet jeden ankommenden Anruf eines zentralen PCs oder den SAIA Programming Utilities. Bei hergestellter Verbindung wird das Flag "Inc_Call" auf "H" gesetzt, bis die Verbindung unterbrochen wird.

Wird nicht mehr kommuniziert, so wird die Modemverbindung durch den PC unterbrochen, nachdem die Wartezeit welche, unter "Hangup timeout" im Menü "Online", "Connection Options", "Setup", "Timing" definiert wurde, abgelaufen ist.

S-Bus PGU Definition der PCD:

S-BUS Configuration	×
S-BUS	OK Cancel
Gateway	
Public Line Modem ✓ Uses Public Line Modem Modem Name: Modem	
USR Spor V 33.6 data	<u>H</u> elp

PCD1 S-BUS Configuration	×
S-BUS <u>S</u> tation Number: 15 PGU <u>P</u> ort Number: 1	OK Cancel
PGU Port Baud Rate: 9600	
S-B <u>U</u> S Mode: Data (S2) ▼	
S-BUS Timing	
Training Sequence <u>D</u> elay (TS): 0 ms	
Turnaround Delay (TN): 0 ms	
<u>R</u> esponse Timeout: 0 ms	Help

arun	- call_pgu [COB 0] Pa	pe: 1/1 Defect: Defect: Defect: Defect: Unit	_ 6 >
e Eat	yew rage Mode E	esource Project graine Options Help	leed.
8		xierit sev ace	2
		SASI Modem Ini En Pdn SASI Diag Cir Dia Call PGU Call PGU	E>
		Modem ?	-
			-
	=		

Fupla Programm der PCD:

<u>PAGE DESCRIPTION</u> Programm to call a PG4.

If the flag Call_PGU is set to high then a call is relased to a PC with PG4 programming unit. Before the PG4 has to be set in S-Bus auto-answer mode to be able to detect the incomming call. After that the connection between the Call PGU and the PC is established, the PC switches in the S-Bus master mode and send level 2 S-Bus telegrams.

FBOX EXTRA INFORMATION WITH ADJUST VARIABLES

1	FBox: SASI Modem (SASI Mode	m), Family: Modem SP 2.0.82
	Channel	Channel 1
	Standby mode	S-Bus PGU
	Default S-Bus mode	Data
	Default transmission speed	9600 bps
	Default Bits-Parity-Stop	8-N-1
	S-Bus Timeout [msec]	0
	S-Bus TS-Delay [msec]	0
	S-Bus TN-Delay [msec]	0
	S-Bus Break length [car]	0
	Station identification	0
	Modem type	User 1
	X-Command	None
	Dial signal	Tone
	Output prefix	
	Recall count	0
	Connect timeout [sec]	45.0
	Pause time [sec]	2.0
	Power down hangup	No
	Auto initialization	Yes
2	FBox: SASI Diagnostic (SASI Di	ag), Family: Modern SP 2.0.82
	Channel	Channel 1

3	FBox: Incoming Call (Incoming (Call), Family: Modem SP 2.0.82
	Channel	Channel 1
	On delay time	2.0
4	FBox: Call PGU (Call PGU), Far	nily: Modem SP 2.0.82
	Channel	Channel 1
	S-Bus Mode	PGU-Config
	Tf number 1	0,026672
	Tf number 2	7508
	Tf number 3	
	Recall count	0
	Recall time [sec]	0.0
	Confirm timeout [sec]	60.0
5	FBox: Version Modem ? (Moder	n ?), Family: Modern SP 2.0.82

6. S-Bus Gateway

6.1 Einleitung

Die wichtigste Einschränkung beim Einsatz eines S-Bus besteht darin, dass nicht mehr als ein Master pro Netzwerk installiert werden kann. Das ist bei Netzwerken nachteilig, welche zum Beispiel ein Überwachungssystem und eine PCD als Master benötigten. Diese Begrenzung erschwert auch Inbetriebsetzungen von S-Bus Netzwerken. Mit dem S-Bus GATEWAY ist es möglich, bis zu 3 externe Master zu betreiben, welche alle in der Lage sind, mit irgend einem Slave oder auch einer normalen Master-PCD auf einem S-Bus Netzwerk zu kommunizieren.

Das folgende Schema zeigt typische Netzwerkkonfigurationen, welche jetzt mit S-Bus realisierbar sind. Daraus kann ersehen werden, dass eine Verbindung mit dem Full Protocol für das PG4 und zwei Verbindungen mit Reduced Protocol für Überwachungs- und Kontrollsysteme (Supervisory Control Systems, SCS) nun möglich sind. Die Gateway-Station tritt also als Master auf und ergibt vier S-Bus Master.

Gateway-Station

Die Gateway-Station ist eine PCD-Station, welche die transparente Verbindung von bis zu 3 externen Mastern mit dem S-Bus Netzwerk steuert. Die Gateway-Station kann ebenfalls wie ein normaler S-Bus Master funktionieren.

Gateway Slave Port (GSP)

Das Gateway Slave Port dient der Verbindung der Gateway-Station mit einem externen Master. Dieser kann entweder das S-Bus PGU-Port oder ein definiertes Port sein, welches eine SASI-Anweisung verwendet.

Gateway Master Port (GMP)

Der Gateway Master Port verbindet die Gateway-Station mit dem Netzwerk der S-Bus Slaves.

6.2 Eigenschaften des Gateways

Die Gateway-Station kann bis zu 3 Gateway Slave Ports aufweisen, welche mit externen Mastern verbunden sein können. Die Gateway Station kann selber auch als S-Bus Master auftreten. Dies ergibt ein Total von 4 S-Bus Mastern pro Netzwerk. Alle 4 Master können parallel arbeiten. Die Gateway Station überwacht den Empfang von Telegrammen der externen Master und die Kommunikationsanweisungen im Anwenderprogramm und überträgt diese weiter auf das S-Bus Netzwerk.

Die Baudrate und der S-Bus-Modus (break/parity/data) kann unabhängig auf allen 3 Gateway Slave Ports und dem Gateway Master Port eingestellt werden.

Nur <u>einer</u> der Gateway Slave Ports kann für FULL S-Bus PGU-Betrieb assigniert werden, die anderen werden mittels einer SASI-Anweisung definiert, was einem Reduced Protocol gleichkommt.

Der Gateway kann ein einfaches CPU System, beispielsweise eine PCD2, oder ein komplexes CPU-System, wie die PCD6, sein. In einer PCD6 kann die Gateway-Arbeit über mehrere Prozessoren verteilt werden. Die Gateway Slave Ports könnten zum Beispiel auf CPU 1, 2 und 3 und der Gateway Master Port auf CPU 0 definiert werden.

Pro Netzwerk ist nur <u>eine</u> Gateway Station erlaubt. Weder eine Kaskadierung noch eine Parallelschaltung von Gateway Stationen sind erlaubt, da sonst undefinierte Resultate entstehen.

6.3 Konfigurierung eines Gateway Master Ports (GMP)

Das Master Gateway Port wird mit dem "Online Configurator" oder mit dem "Offline Configurator" unter "S-Bus" im "Project Manager" der PG4 Utilities konfiguriert.

S-BUS Configuration	×
S-BUS	US OK Cancel
Gateway ✓ <u>Has Gateway Port</u>	way
Public Line Modem	lem

Nach der Auswahl von "Has Gateway Port" und der Betätigung des Knopfes "Gateway" erscheint folgendes Fenster:

Master Gateway Port Configuration	×
Master Gateway Port: 1	OK Cancel Help
S-BUS Timing Training Sequence <u>D</u> elay (TS): 0 <u>I</u> urnaround Delay (TN): 0 <u>R</u> esponse Timeout: 0 Break <u>L</u> ength: 4	ms ms ms characters

Die folgenden acht, für die Initialisierung des Gateways wichtige Parameter, müssen definiert werden.

Master Gateway Port (GMP)

Dieses Feld spezifiziert das als Gateway Master Port zu verwendende Port. Dabei werden alle, auf dieser PCD möglichen Ports angezeigt.

Port on <u>C</u>PU (PCD6 only)

Dieses Feld gilt nur für PCD6 und definiert auf welcher CPU das Gateway Master Port konfiguriert werden soll.

Baud Rate

Die Übertragungsrate des Gateway Master Ports ist zwischen 110 und 38'400 Baud einstellbar, dies wie bei jedem Standard-S-Bus Kommunikationsprotokoll.

<u>S</u>-BUS Mode

Dieses Feld ermöglicht die Definition des Break-Modus, des Parity-Modus oder des Data-Modus.

Training Sequence <u>D</u>elay (TS)

Das Training Sequence Delay wird in Millisekunden angegeben und entspricht der Zeitverzögerung zwischen dem Setzen von RTS (Request To Send) und der Übertragung von Meldungen. Diese Grösse wird speziell im Zusammenhang mit Modems verwendet. Bei Eingabe einer Null als TS delay werden die Standardwerte (default values) verwendet. Diese können im Konfigurations Help-Text (Help Taste) und in der nachfolgenden Tabelle gefunden werden.

Turnaround Delay (TN)

Die Turnaround Zeit wird in Millisekunden angegeben und entspricht der minimalen Zeit, welche zwischen dem Ende einer Antwort und der Übertragung des nächsten Telegramms verstreicht. TN-delay gibt der entfernt installierten Station Zeit, auf Empfangsmodus zurückzuschalten. Das TN delay ist speziell bei Verwendung eines PCD7.T100 Repeaters oder von PLMs wichtig. Bei Eingabe einer Null als TN delay werden die Standardwerte (default values) verwendet. Diese können im Konfigurations Help-Text (Help Taste) und in der nachfolgenden Tabelle gefunden werden.

Response Timeout

Die Dauer des Timeouts wird in Millisekunden angegeben und betrifft die Übermittlung zwischen dem Master Gateway Port und den an diesem angeschlossenen Slave(s). Dabei wird die maximale Zeit definiert, während welcher der Master warten wird, bevor nach einer Fehlübertragung ein Neuversuch gestartet wird. Die nachfolgend aufgeführte Tabelle beinhaltet die in Abhängigkeit von der Baudrate des Master Gateway Ports einzustellenden Werte der Timeouts in Millisekunden. Eine Anpassung dieser Werte bei Abweichung der TS- und TN-Verzögerungen von ihren respektiven Standardwerten (default values) ist vielleicht notwendig. Bei Eingabe einer Null werden die Standardwerte (default values) verwendet.

Baudrate	110	150	300	600	1200	2400	4800	9600	19200	38400
TS delay [ms]	0	0	0	0	0	0	0	0	0	0
TN delay [ms]	27	20	20	5	3	2	2	1	1	1
Timeout [ms] Br/Par	15000	9000	5000	3000	2000	1000	500	250	200	200
Timeout [ms] Data	15000	15000	7500	4500	3000	1500	750	375	300	300

Break <u>L</u>ength

Dieser Parameter spezifiziert die Anzahl Breakzeichen im Break-Modus (Modus 0). Der Standardwert (default) ist 4.

Die S-Bus Nummer und ein allfälliger S-Bus PGU Port werden im Menü "S-Bus" der "S-Bus Configuration" eingestellt werden.

S-BUS Co	nfiguration			×
- S-BUS -				ок
	JS Support	<u>S</u> -BUS		
- Gatew	PCD1 S-BUS Config	juration		×
EΗ	S-BUS <u>S</u> tation Nur	mber: 15		OK
– Public	PGU <u>P</u> ort Nur	mber: 0 💌	[Cancel
	PGU Port <u>B</u> aud I	Rate: 38400 💌		
Mode	S-B <u>U</u> S M	lode: Data (S2)	•	
	-S-BUS Timing			
	Training Sequence	e <u>D</u> elay (TS): 0	ms	
	<u>T</u> urnaround	d Delay (TN): 0	ms	
	<u>R</u> espo	nse Timeout: 0	ms	Help

6.4 Konfigurierung des Gateway Slave Ports

Ein Gateway Slave Port kann für ein Reduced Protocol, welches eine SASI-Anweisung verwendet oder für ein Full Protocol, wie das S-Bus PGU-Port definiert werden.

6.4.1 S-Bus-PGU

Definitionsgemäss wird das S-Bus PGU-Port **immer** mit dem Gateway Master Port verbunden. Das bedeutet, dass ein vom S-Bus PGU-Port erhaltenes S-Bus Telegramm, welches jedoch nicht für die Gateway Station selber bestimmt ist (Nichtübereinstimmung der Adresse), automatisch weiter zum Gateway Master Port übermittelt wird. Dies ist bei FULL S-Bus Protokoll gültig.

6.4.2 SASI Anwenderanweisung

Ein Gateway Slave Port kann über das Anwenderprogramm mit den Standard-SASI-Assignierungsanweisungen definiert werden. Der SASI-Text muss eine neue Modusdefinition für den GS-Modus (für Gateway Slave) enthalten. Nach Ausführung der Anweisung wird eine automatische Verbindung zwischen dem Gateway Slave Port und dem Gateway Master Port für alle Telegramme aufgestellt, welche nicht für die Gateway Station selbst bestimmt sind.

Ein im GS-Modus konfiguriertes Port arbeitet gleich wie ein im SS-Modus konfiguriertes Port (zum Beispiel Reduced S-Bus Protokoll), hat jedoch eine Verbindung zum Gateway Master Port. Die Diagnose-Flags und die Register arbeiten in beiden Modi gleich.

SASI-Textformat

```
''UART: <uart_def>, <timeout>, <TS-delay>, <TN-delay> ;''
''MODE: GS <mode_option>;''
''DIAG: <diag_def>''
```

wobei:

<uart_def></uart_def>	Spezifiziert die Baudrate der GSP für die Kommunika-
	tion mit dem externen Master.
<timeout></timeout>	Keine Bedeutung für GSP
<ts-delay></ts-delay>	Initialisiert die Training Sequence Delay für Kommuni-
	kationen mit dem externen Master.
<tn-delay></tn-delay>	Initialisiert die Turnaround Zeit für Kommunikationen
	mit dem externen Master.
<mode_option></mode_option>	Break (0), parity (1) oder data (2)
<diag_def></diag_def>	Spezifiziert die Diagnose-Flags und das Diagnose-Register
Beispiel:	
TEXT 1000 '	'UART: 9600_0_1:MODE:GS1:DIAG:E500_R500"

6.5 Verwendung von STXM/SRXM in der Gateway-Station

Damit eine Gateway Station in der Lage ist, einen STXM/SRXM-Befehl wie eine normale Masterstation auszuführen, muss ein Anwender SASI-Befehl auf dem GMP ausgeführt werden. Das Anwenderprogramm wird dann mit dem Gateway Master Port unter Benutzung einer neuen Definition, GM-Modus (für Gateway Master), verbunden. Die STXM/SRXM-Befehle können dann gleich verwendet werden wie im SM-Modus. Auch die Diagnose-Flags und das Diagnose-Register führen dann dieselben Funktionen aus.

SASI Textformat

"MODE: GM,<dest_reg>;DIAG:<diag_def>"

wobei:

<dest_reg></dest_reg>	Spezifiziert die Registernummer zur Angabe der S-Bus Adresse (destination address).
<diag_def></diag_def>	Spezifiziert die Diagnose-Flag und das Diagnose- Register. Gleiche Arbeitsweise wie SMx-Modus.

Alle Werte für den S-Bus-Modus, TN-delay, TS-delay und Timeout kommen direkt vom Gateway Master Port Konfigurationsmenü.

Beispiel:

TEXT 1000 "MODE:GM,R300;DIAG:F500,R500"

Der SASI GM kann nur auf der CPU des Master Gateway Ports ausgeführt werden.

Die Ausführung einer SASI GM Instruktion muss beim Setzen des Access-Timeouts berücksichtigt werden.

6.6 Setzen des Timeouts in einem S-Bus Netzwerk

Das folgende Diagramm dient der Darstellung eines einfachen Master-Slave Netzwerks :

Dieses Schema zeigt, dass das minimale Timeout des Masters grösser sein muss als die kombinierte Zeit für die Telegrammübermittlung und die TN/TS-Zeitverzögerungen. Die bei Verwendung von S-Bus initialisierten Standardwerte erfüllen diese Regel. Bei Verlängerung der TN/TS-Zeiten muss der Timeout-Wert proportional vergrössert werden.

Beim Zufügen eines zusätzlichen Layers für externe Master wird die Berechnung des Timeouts komplizierter.

	 				E	Externes Ma	aste	r Tim	eout					
Master - GSP Netzwerk_	TN	тs	Telegramm								TN	тѕ	Antwort	İ,
				 		GMP Ti	me	out			1			-
GMP - Slave Netzwerl	k			TN	тѕ	Telegramm		ΤN	TS	Antwort	1			

Aus diesem Schema ist ersichtlich, dass das externe Master-Timeout minimal auf den doppelten Wert des GMP-Timeouts verlängert werden muss. Jeder Neuversuch einer Anwahl des externen Masters während der Übertragungsoperationen der Gateway-Station wird ignoriert.

Die Berechnung des externen Master-Timeouts wird beim Zufügen weiterer Master noch erschwert, da die Gateway-Station Telegramme anderer externen Mastern übertragen kann. Folgende allgemeine Regel sollte für die Berechnung des Master-Timeouts angewendet werden.

Externes Master Timeout = (1,5 GMP Timeout) x Anzahl Master

Wobei sich die "Anzahl Master" auf die Anzahl externer Master zusätzlich des Gateways als Master bezieht.

Der Gateway wird nur als Master gerechnet, wenn in der Gateway Steuerung STXM/SRXM-Befehle auf den Gateway Master Port ausgeführt werden. In diesem Fall hat die Gateway Steuerung eine Wertigkeit von 3 Mastern. (Bedingt durch die 3-fache Wiederholung eines Gateway Telegramms im Fehlerfall) Beispiel für die Anzahl Master: 2 externe Master + Gateway, welcher STXM/SRXM-Befehle auf den GWY Master Port ausführt: Anzahl Master = 2 + 3 = 5

Die folgende Tabelle stellt die externen Master-Timeouts in Millisekunden dar, dies in Abhängigkeit der Anzahl Master und der Baudrate des Gateway Master Ports. Alle externen Master, zum Beispiel PG4 und die Überwachungssysteme sollten mit diesen Werten initialisiert werden.

	Anzahl Master									
GMP Bau- drate	1	2	3	4	5	6				
110	22'500	-	-	-	-	-				
150	13'500	27'000	-	-	-	-				
300	7'500	15'000	22'500	-	-	-				
600	4'500	9'000	13'500	18'000	22'500	27'000				
1'200	3'000	6'000	9'000	12'000	15'000	18'000				
2'400	1'500	3'000	4'500	6'000	7'500	9'000				
4'800	750	1'500	2'250	3'000	3'750	4'500				
9'600	375	750	1'125	1'500	1'875	2'250				
19'200	300	600	900	1'200	1'500	1'800				
38'400	300	600	900	1'200	1'500	1'800				

Für Break- und Parity-Modus:

Für Data-Modus:

		Anzahl Master									
GMP Bau- drate	1	2	3	4	5	6					
110	33'750	-	-	-	-	-					
150	20'250	40'500	-	-	-	-					
300	11'250	22'500	33'750	-	-	-					
600	6'750	13'500	20'250	27'000	33'750	40'500					
1'200	4'500	9'000	13'500	18'000	22'500	27'000					
2'400	2'250	4'500	6'750	9'000	11'250	13'500					
4'800	1'125	2'250	3'375	4'500	5'625	6'750					
9'600	563	1'125	1'688	2'250	2'812	3'375					
19'200	450	900	1'350	1'800	2'250	2'700					
38'400	450	900	1'350	1'800	2'250	2'700					

6.7 Mögliche Fehlerquellen

Wenn während der Konfigurierung des Master Gateway Ports und des Aufstartens Probleme auftreten, geht die PCD direkt in "HALT" und die folgende Meldung erscheint im Debugger:

"MGWY INIT FAIL "

Die Gründe können die folgenden sein:

- Assignierung eines Master Gateway Ports auf einen nicht vorhandenen CPU. Diese Meldung erscheint nur auf der CPU 0.
- Eine Assignierung eines Master Gateway Ports auf einer CPU, welche keine Kommunikations-Ports besitzt (falscher CPU Typ), wird diese Meldung ebenfalls generieren.

Eine nicht-existierende oder gestörte Kommunikation zwischen externem Master und der Gateway-Station oder einer Slavestation kann von einer schlechten Einstellung der verschiedenen Zeitvorgaben in der Gateway-Station und dem externen Master herrühren. Die Timeouts aller externen Master müssen in Abhängigkeit der Anzahl Master und der Einstellung der Baudraten angepasst werden.

7. Verwendung des S-Bus mit dem PG3

Die Methode zum Konfigurieren und zum Einsetzen des S-Bus zusammen mit den PG3 Programmier-Utilities ist dieselbe wie diejenige mit dem PG4 unter Windows. Der hauptsächliche Unterschied liegt darin, dass PG3 unter DOS läuft und dass die Konfiguration der PCD nicht online durchgeführt wird.

Eine ausführliche Beschreibung ist den folgenden Kapiteln zu entnehmen:

- **Definition der Stationsnummer** in Kapitel 3.1
- Konfigurierung und Assignierung einer S-Bus PGU-Schnittstelle in Kapitel 4.3
- Verbindung des Programmiergerätes via den S-Bus in Kapitel 4.4
- Konfigurierung der PCD Utilities für das eigene Modem in Kapitel 5.2.3
- Verbindung über das öffentliche Telefonnetz in Kapitel 5.3
- Beispiel eines PCD Programmes (mit Modem) in Kapitel 5.5
- Konfigurierung eines Gateway Master Ports (GMP) in Kapitel 6.3

7.1 Definition der Stationsnummer

Jeder Slavestation ist eine Nummer zugeordnet, welche ein Adressieren von der Masterstation aus ermöglicht. Diese Nummer wird im "Header" des Anwenderprogramms des Speichermoduls der Slavestation abgespeichert.

Definition der Stationsnummer bei Verwendung von Speichermodulen mit RAM-Bausteinen (PCD7.R2.., PCD7.R3.., PCD6.R51. oder PCD6.R610.) :

- 1. Programmiereinheit an die Programmierschnittstelle "PGU" der PCD anschliessen.
- 2. Option "Configure" aus dem Hauptmenü anwählen.
- 3. Anwählen des "S-Bus Communication" Untermenüs (aus dem Menü Configure) und Eingabe der gewünschten Stationsnummer.

Station number (0. S-BUS PGU PORT CONFIGURATION	.254)	1	(255 = No S-BUS support)
S-BUS PGU PORT CONFIGURATION			
	- FU	R CPU TYPE	PCD4
PGU Port Allocation:	CPU	PGU PORT	
PCD4: Only one PGU port	0+1	None	
allowed, both CPUs can └└ be accessed through it.		1	
PGU port baud rate . (1103	8400)	9600	NOTE
S-BUS mode (Break/Pa DOU wie Dublie Line Melen	rity)	Parity	Changes do not take effect
rgu via rublic Line nodem .		no	until a CONFIGURE S-BUS
S-BUS TIMING (A=default)			"Un/download" menu or until
TS delau in $mS = (0, or 11)$	5000)	0	"SDNLD ZS" is executed from
Timeout in mS (0, or 11	5000)	0	the DOS prompt.
TN delay in mS (0, or 11	5000)	0	

Alle anderen Parameter sind auf dem S-Bus Level 1 nicht relevant, wenn weder Modem noch Repeater verwendet werden.

- 4. Änderungen abspeichern und zurück zum Hauptmenü gehen.
- 5. Aus dem "coNnect" Menü bei "Comms mode" den "PGU MODE:..." anwählen.

SAIA PCD PROGRAMMING UTILITIES \$198
This menu defines and makes the online connection to the PCD. For connection directly to a local PCD's PGU port use PGU MODE. For connection to an S-BUS network or via a modem, select S-BUS MODE and enter the station number. number. Enter a telephone number for dial-up modems, or leave it blank for private line modems. For a PCD4, either CPU 0 or CPU 1 can be connected.
Action, press SPACE to select CONNECT
CPU number (01) 0
Comms mode (PGU or S-BUS) PGU MODE: COM1, 9600
SPACE selects protocol, ARROW or TAB moves, ENIER executes, ESC aborts.
Configuration: F3=S-BUS F4=Download S-BUS F5=Serial ports F6=Modem F1=Help

6. Definierte Konfiguration mittels des "Up/Download" Menüs mit der Option "Configure S-Bus" zur PCD transferieren. Damit wird die S-Bus Stationsnummer in den Header des Speichermoduls geschrieben.

SAIA	A PCD LOADE	8 \$19B		CI	YU: 0	Type: D	4M12005	Memory	RAM		
	The DOWNLOAD, ALLOCATE MEMORY or CONFIGURE S-BUS operations STOP ALL CPUs. The ALLOCATE MEMORY operation DELETES ALL CODE, TEXI and EXTENSION MEMORY.										
с	PROGRAM NAME	CODE Seg	SIZE (L USED	ines) FREE	TEXT SEG	SIZE (B USED	ytes) FREE	CPU STATI	IS		
0 1	AI	14K 0K	323 0	13863 0	8K OK	0 0	8192 0	RUN Disconneo	TED		
	Operation, SPACE selects CONFIGURE S-BUS Name of file CPU number A										
	Veri	y during	g downlo	ad No							
SPAC	CE selects (operation	n, ARROU	moves o	ursor,	ENTER ex	ecutes,	ESC exits			
Conf	iguration:	F2=PCD 1	type+mem	ory F3:	S-BUS	F4=PCD m	oden Ff	5=Gateway	F1=Help		

Die zugewiesene Nummer kann im "Debugger" mit dem Befehl "Display S-Bus" eingesehen werden.

Definition der Stationsnummer bei Verwendung von Speichermodulen mit EPROM

- 1. PCD-Utilities aufrufen und im Menü "Configure S-Bus communications" die Stationsnummer eingeben.
- 2. Im Menü "Program Eproms" die Anwender-Eprom programmieren. Bei diesem Vorgang wird die eingegebene Stationsnummer automatisch im "Header" des Anwenderprogrammes gespeichert.

Die Stationsnummer gilt immer für die ganze PCD-Station, selbst wenn mehrere Schnittstellen der gleichen Station im S-Bus-Modus assigniert sind.

7.2 Konfigurierung und Assignierung einer S-Bus PGU-Schnittstelle

Die hier angewandte Prozedur hängt davon ab, ob RAM- oder EPROM-Speichermodule verwendet werden.

7.2.1 RAM-Speichermodule

Allgemein gilt folgendes: Eine S-Bus PGU-Schnittstelle kann nur via die Original-Schnittstelle und mit dem P8 Protokoll konfiguriert werden.

***	FOR SAIA'S INTERNAL USE ONLY ***
SAIA PCD CONFIGURATION Harduare and menory S-Bus communications MoDen for SAIA PCD Gateway master port	Select PCD type, memory type and memory allocation Configure the PCD's S-BUS station and PGU port Modem for S-BUS PGU port via public line modem Configure PCD for use as an S-BUS gateway
PERSONAL COMPUTER CONF Moden for PC Serial ports for PC Printer Editor program names Colour set	IGURATION Modem for Personal Computer using public line modem Select the PC's COM ports, baud rates and tining Define printer page format and control strings Editor, Graftec code editor and word processor names Select the colours, for colour screens only
COMMANDS List configuration Quit	List the present configuration on the printer Exit configurator, save or discard the configuration

1. Definitionen im Menü **"Configure"**: SAIA PCD CONFIG.: "Hardware and memory": PCD-Typ

SAIA PCD PROGRAMMING UTIL	ITIES CONFIGURATOR \$19B	HARDWARE AND MEMORY
PCD processor type	PCD4	
Code/text memory size	64K Bytes (16K Code/64K To	ext, PCD4/PCD7.Rxxx)
Extension memory size	None	
Memory Allocation: NOTE Changes do not take effect in the PCD until the "ALLOCATE MEMORY" operation is done from the "Up/download" menu, or until "SDNLD /H" is executed. Press SPACE to select the	CPU CODE IEXT K Lines K Bytes 1 0 0 TOTAL 64K Bytes	SC or ENTER accepts.
		F1=Heln

Dieses Menü definiert den PCD-Typ, die Speichergrösse und die Speicheraufteilung. Nach deren Definition muss die Speicherorganisation mittels des "Reallocate memory"-Befehls des "Up/downloader" Menüs zur PCD transferiert werden. Abhängig vom hier definierten PCD-Typ, erlauben andere Menüs und Programme die Ausführung verschiedener Einstellungen.

Station number ((9254)	1	(255 = No S-BUS support)
S-BUS PGU PORT CONFIGURATIO	DN - FO	DR CPU TYPE	PCD4
PGU Port Allocation:	CPU	PGU PORT	
PCD4: Only one PGU port	0+1	None	
be accessed through it.			
PGU port baud rate . (110.	. 38400)	9600	NOTE
S-BUS mode (Break/) PGU via Public Line Modem	Parity) · · ·) Parity . No	Changes do not take effect until a "CONFIGURE S-BUS"
S-BUS TIMING (0=default):			operation is done from the "Up/download" menu, or until
TS delay in mS (0, or 1.	.15000)	0	"SDNLD /S" is executed from
Timeout in mS (0, or 1.	.15000)	0	the DOS prompt.
TN delau in mS (0, or 1,	.15000)	0	<u>r</u>

"S-Bus communications": Stationsnummer, PGU-Port, Baudrate, Modem

Die S-Bus Stationsnummer, die Nummer der für das S-Bus PGU einzusetzenden Schnittstelle, die Baudrate und der S-Bus-Modus (normaler-weise "Parity" wenn keine Modems verwendet werden) müssen hier definiert werden.

Normalerweise muss das "S-Bus timing" auf 0 belassen werden (= Standardwert).

PERSONAL COMPUTER CONFIGURATION:

"Serial ports for PC": Schnittstellen und Baudraten des Programmiergerätes (Personal Computer).

SAIA PCD PROGRAMMING UTILITIES CON	IGURATOR \$1	9B	SERIAL PORTS FOR PC
Up to four serial ports (COM1COM port for communications in PGU mod on the PCD6), S-BUS mode over an S EPROM Programmer. The same ports of	14) may be p le (via the S-BUS networ can be share	resent in yo PCD's PGU po k or via a n d if require	our PC. Select the ort or the PCD8.P800 modem, and for the ed.
Serial ports present	COM1		
Serial port for PGU connection	COM1	Baud rate	9600
Serial port for EPROM Programmer	COM1	Baud rate	9600
Serial port for S-BUS connection	COM1	Baud rate	9600
- S-BUS TIMING FOR PC TS delay in mS (0, or 115000) Timeout in mS (0, or 115000) TN delay in mS (0, or 115000) Break length (characters, 125)	0] 0] 0	0 = Use min For S-BUS '	nimun default values "Break" mode only
Press SPACE to select the port, AR	10W moves cu	rsor, ESC or	r ENTER accepts.

Die seriellen Schnittstellen der Programmiereinheit werden in diesem Menü definiert. Die Einstellung der Baudrate muss mit derjenigen der PCD übereinstimmen ("S-Bus communications" Menü). 2.

 SAIA PCD PROGRAMMING UTILITIES \$198

 Ihis menu defines and makes the online connection to the PCD. For connection directly to a local PCD's PGU port use PGU MODE. For connection to an S-BUS network or via a modem, select S-BUS MODE and enter the station number. number interesting the problem of the PCD or CPU 1 can be connected.

 number. Inter a telephone number for dial-up modens, or leave it blank for private line modems. For a PCD4, either CPU 0 or CPU 1 can be connected.

 Action, press SPACE to select
 CONNECT

 CPU number (0.,1)
 0

 Comms mode . . (PGU or S-BUS)
 PGU HODE: CON1, 9600

 SPACE selects protocol, ABROU or TAB moves, ENIER executes, ESC aborts.

 Configuration: F3=S-BUS F4=Download S-BUS F5=Serial ports F6=Moden F1=Help

"coNnect" Menü : "Comms mode": Auswahl für den PGU-Modus.

Dieses Menü dient der Festlegung des Kommunikationsprotokolls (S-Bus oder P8) für die Programmiereinheit, für jede angeschlossene PCD-Station und für die Nummer der CPU. Vor der Verbindung einer PCD via ein Online-Programm (z.B. dem Debugger), ist die Definition des Kommunikationsprotokolls mittels diesem Menü unerlässlich.

3. Das "**Up/download**" Menü, transferiert die definierte Konfiguration mittels "Configure S-Bus" zur PCD

SAIA	PCD LOADEI	3 \$19B		CI	'U: O	Type: D	4M12005	Memory	: RAM
Ih Th	IE DOWNLOAD, Ie allocate	, ALLOCAT Memory o	IE MEMOF	lY or COM In DELETH	IFIGURE S ALL C	S-BUS op ODE, TEX	eration: T and E	s STOP ALL Xtension M	CPUs. Emory.
С	PROGRAM Name	CODE Seg	SIZE (I USED	ines) FREE	TEXT Seg	SIZE (B USED	ytes) FREE	CPU STAT	US
0	AI	14K 0K	323 A	13863 A	9K 8K	0	8192 A	RUN	ՐԾԵՍ
	Operation, SPACE selects CONFIGURE S-BUS Name of file CPU number 0 Verify during download No								
SPAC Conf	E selects o	peration F2=PCD f	ı, ARROL	l moves o Joru F3:	ursor, S-BIIS	ENTER ex F4=PCD m	ecutes, odem Fi	ESC exits	F1=Heln

Die Funktion "Configure S-Bus" transferiert die im Menü "Configure / S-Bus communications" definierten Einstellungen zur PCD und aktiviert diese. Die Funktion ist einzig bei Verwendung eines RAM-Speichermoduls anwendbar. Bei EPROM-Speichermodulen kann die S-Bus Konfiguration mittels der "Program eproms" Utility in das EPROM geschrieben werden. Die S-Bus Parameter sind ebenfalls mittels der Funktionstasten: F2 (PCD-Typ + Speicher), F3 (S-Bus), F4 (PCD-Modem) und F6 (Gateway) erreichbar. Hier wird das Menü "Configure" nicht verwendet. 4. "**Debug**", testet die Richtigkeit der Definitionen mit "Display s-bUs". Dieser Befehl zeigt die gewählte S-Bus Konfiguration jeder angeschlossenen CPU.

SAIA PCD DEBUG \$19B	a CPU: O	Type: D4M12005	Status: STOP	000000
COMMUNICATIONS: PGU	MODE, 9600 Baud,	COM1		
USING P800 PROTOCOL	"SBUG DBA" LOADED			
ON LINE				
STUPPED ×000000 XOB	16	A0	20 NO P1 E0 IXO	XOB16
>Display s-bUs S-BUS PCU PORT				
Station: 1				
PGU port: Not d	efined			
Run Stop Trace D Print File Help	isplay Write Ins cOnnect broAdcast	struction Batch : Quit	Clear rEstart	Locate

Die konfigurierte S-Bus PGU-Schnittstelle ist nun mit dem S-Bus Protokoll assigniert und einsatzbereit. Diese Konfigurierung kann einzig mit dem "Up/downloader" mittels des Untermenüs "Configure S-Bus" geändert werden.

7.2.2 EPROM-Speichermodule

- 1. Wie bei RAM-Speichermodulen.
- 2. Mit "Program eproms" EPROM programmieren oder eine Hex-Datei erzeugen. Die S-Bus-Konfiguration wird automatisch ins EPROM geschrieben.
- 3. Einstecken der EPROMs in die PCD und Verbindung zum Programmiergerät erstellen. PGU (P8) Protokoll mit dem "coNnect" Menü wählen.
- 4. Mittels "coNnect"-Menü des Debuggers die Einstellung prüfen.
- Die konfigurierte S-Bus PGU-Schnittstelle ist nun mit dem S-Bus Protokoll assigniert und einsatzbereit. Da die Konfiguration im EPROM gespeichert ist, kann eine Änderung der Daten einzig durch Neuprogrammierung der EPROMs erfolgen.
- 6. Wie bei RAM Komponenten.

7.3 Verbindung des Programmiergerätes via den S-Bus

Die Programmiereinheit ist mit der S-Bus PGU-Schnittstelle (als Punkt-Punkt Verbindung oder via RS485-Netzwerk) zu verbinden und das S-Bus Protokoll, die CPU und die Stationsnummer vom "coNnect" Menü aus zu wählen.

Nach erfolgreicher Verbindung mit der im "Connect" Menü definierten Station, sind alle Funktionen der PG3 Utilities via S-Bus PGU-Schnittstelle verwendbar.

Bei gewähltem S-Bus Protokoll werden bei allen Online-Programmen der PCD-Utilities die Stationsnummer jeder angeschlossenen Slave-Station auf der oberen Statuslinie (top line) des Bildschirms angezeigt.

Debug "cOnnect"

Dieses Untermenü ermöglicht das Anwählen einer CPU der angeschlossenen Station (PCD4.M445). In einem S-Bus-Netzwerk ist ein Umschalten zwischen den einzelnen Stationen möglich. Der Befehl "Analysesbus-network" aus dem Debugger-Menü "cOnnect" erlaubt eine on-line Kontrolle des kompletten Netzwerks. Dabei können Baudrate, Stationsnummer und PCD-Typ aller aktiven Stationen eingesehen werden. Es kann so das Netzwerk auf dem Programmiergerät abgebildet werden.

7.4 Konfigurierung der PCD Utilities für das eigene Modem

Die PCD-Utilities enthalten einige Standardkonfigurationen für das Modem:

- Hayeskompatibel
- Hayeskompatibel für hohe Übertragungsraten
- US Robotics Courier
- Zyxel Serie U-1496
- Miracom WS 3000
- Anwenderdefinierte Modems

Mittels des "Configure" Menüs sind die verschiedenen Modems und die von diesen verwendeten Befehle ersichtlich. Weiter sind folgende Untermenüs erreichbar:

- Modem für SAIA[®] PCD Menü
- Modem für PC

Wenn das eigene Modem oder die Befehlstrings nicht auffindbar sind, kann ein passendes Modem der Liste beizufügt werden, indem die Datei "modem.dat" editiert wird. Diese Datei befindet sich im Verzeichnis, in welchem die PCD-Utilities installiert sind (normalerweise \PCD)

Die Datei "modem.dat" kann mit einem ASCII-Texteditor (wie z.B. EDIT aus dem DOS) editiert werden. Am Ende dieser Datei liegt "User-defined modem". Hier kann das eigene Modem eingetragen werden. Beim Einsatz mehrerer Modems sind alle Konfigurationen hier einzutragen.

SAIA MODEM CONFIGURATION FILE - MODEM.DAT ;SEE CONFIGURATOR'S HELP TEXTS FOR DETAILS :DO NOT EDIT THESE [Hayes Compatible] :CAN BE EDITED FOR CUSTOM MODEM CONFIGURATION [User-defined Modem] ;Modem type BreakMode=Yes ;No=Break mode not supported, default=Yes ;Yes=Parity mode supported, default=No ParityMode=No ;*** PC Modem Reset="ATZ\r" :Reset modem Init="AT&Q0/r" :Initialize modem DialPrefix="ATDT" ;Sent before number ("ATDP"=pulse dialling) DialSuffix="\r" ;Sent after number Hangup="ATH0\r" ;If blank, dropping DTR for 2 sec is used Command="~~~+++~~~" ;Switch modem to command mode Delay="~" ;Character to provide 0.5 second delay AnswerOn="ATS0=1\r" ;Turn on auto-answer mode (S0=1->answer on 1st ring) :Turn off auto-answer mode AnswerOff="ATS0=0\r" Timeout=45 :Connect timeout in seconds Retries=2 :Number of dialler retries if Timeout occurs CmdOk="OK" ;Response string, command executed OK Connect="CONNECT" ;Response string, connected OK after dial :*** SAIA PCD Modem PCDReset="ATZ\r" Reset PCD modem ;Init PCD modem, must include 'S0=x' (with x > 0) PCDInit="ATM0E0S0=2S25=250\r" ; to put modem into auto-answer mode

;OTHER MODEM CONFIGURATIONS CAN BE ADDED HERE

Break-Mode Parity-Mode	Mit diesen Parametern kann definiert werden, welche S-Bus Protokolle das Modem unterstützt. Dabei können mehrere S-Bus Protokolle ausgewählt werden. Das PG3 wird bei einer S-Bus Verbindung via Modem versuchen, mit allen ausgewählten S-Bus Protokollen eine Verbin- dung zur PCD herzustellen. Sobald das richtige S-Bus Protokoll gefunden worden ist, wird die S-Bus Verbin- dung hergestellt. Um die S-Bus Verbindung zu be- schleunigen oder unerwünschte Nebeneffekte im Mo- dem zu vermeiden, sollte nur das gewünschte S-Bus Protokoll eingeschaltet werden. Das zuletzt angewählte S-Bus Protokoll wird bei einer neuen S-Bus Verbindung als erstes Protokoll angewendet. Der S-Bus Data-Mode ist immer eingeschaltet.
Reset	Setzt das Modem auf den ab Werk eingestellten Stan- dardstatus

Init	Initialisiert das Modem: Setzt Timeouts, schaltet Feh- lererkennung bei Datenkompression aus, schaltet De- tektion des Aufbaus der Verbindung aus, usw
DialPrefix	Wird vor der eigentlichen Wahl der Telefonnummer ge- sendet
DialSuffix	Wird nach der eigentlichen Wahl der Telefonnummer gesendet. Normalerweise "\r" (CR).
Hangup	Dieser Befehl schaltet die Linie ab und hängt auf. Wenn leer, wird angenommen, dass das Zurückschalten von DTR (Data Terminal Ready) nach einigen Sekun- den die Linie aufhängen wird, wie bei hayeskompati- blen Modems.
Command	Dieser Befehl schaltet das Modem vom Daten-Transfer zum Command-Modus um. Vor und nach dem "+++"- String ist eine Zeitverzögerung von 1.5 Sekunden pro- grammiert, welche durch drei 0.5 Sekunden Verzöge- rungs-Zeichen "~~~" definiert ist.
Delay	Ist ein spezielles Blindzeichen. Wenn dieses Zeichen in einem Modem-Befehlstring erscheint, wartet das Sy- stem während 500 ms bevor das Zeichen zum Modem übertragen wird. Normalerweise wird das Wiederho- lungszeichen (~), dazu verwendet. Dieses Zeichen ist auch im Beispiel "Command" zu finden.
Auto-answer on	Dieser String schaltet das Modem in den Auto-Answer- Modus, damit ein ankommender Anruf sofort beant- wortet und die Verbindung zum entfernt installierten Modem aufgebaut wird. Dieser Befehl wird dazu ver- wendet, den "auto-answer mode" einzuschalten. Dieser String ladet normalerweise ein Register als Klingelzei- chenzähler in das Modem (SO). Wenn der Klingelzei- chenzähler nicht Null ist, beantwortet das Modem einen Anruf nach Ablauf der voreingestellten Anzahl Klingel- zeichen.
Auto-answer off	Dieser String schaltet den Auto-Answer-Modus aus, womit das Modem einen hereinkommenden Anruf nicht automatisch beantworten wird. Dieser String setzt nor- malerweise das Register des Klingelzeichenzählers (S0) auf 0.
Timeout	Zeit, welche nach der Wahl verstreicht, bis die Über- prüfung des Übertragungssignals (DCD) des entfernt in- stallierten Modems erfolgt. MERKE: Das Modem be- sitzt oft selbst ein internes Timeout (normalerweise 30- 45 Sekunden). Das Timeout wird nicht verwendet, wenn der interne Wert des Modems einer kürzeren Zeitverzögerung entspricht.

	Um ein längeres Timeout programmieren zu können, muss der Wert des modeminternen Timeouts durch Hinzufügen des Befehls in die "Init" Sequenz geändert werden. Bei hayeskompatiblen Modems heisst dieser Befehl "S7=n", wobei "n" die Dauer des Timeouts in Sekunden darstellt. Für ein Timeout von 45 Sekunden wird der Befehl bei einem hayeskompatiblen Modem wie folgt aussehen: Init="ATS7=45\r" ; setzt eine 45 Sekunden Zimeout Timeout = 45
Retries	Anzahl zusätzlicher Nach-Wahlen nach missglücktem ersten Versuch, eine Verbindung mit dem entfernt in- stallierten Modem herzustellen. Max. sind 3 Versuche möglich.
CmdOk	String, welcher vom Modem bei angenommenem Be- fehl zurückgeschickt wird. Dieser String wird zurückge- schickt, wenn die Befehle "Reset", "Init" oder "Han- gup" gesendet worden sind.
Connect	String, welcher vom Modem nach einer erfolgreichen Wahl vom entfernt installierten Modem zurückkommt.

PCD MODEM:

PCDResetGilt nur für Modems, welche mit einer PCD verbunden
sind. Das Modem wird zurückgesetzt (Reset).PCDInitGilt nur für Modems, welche mit einer PCD verbunden
eind. Satzt das Modem in dan Auto Answen Modes as

sind. Setzt das Modem in den Auto-Answer-Modus, sodass automatisch die ankommenden Anrufe beantwortet werden. Dieser String sollte auch die "DTR detect time" auf einen Wert grösser als 250 ms setzen. Dies verhindert, dass das Modem die Linie bei der Ausführung von "restart" aufhängt.

Modemstrings können Escape-Sequenzen für Standard-ASCII Kontrolzeichen oder Hex-Werte beinhalten. Diese werden von einem Backslash '\' eingeleitet:

\r	0x0D	CR	Wagenrücklauf (Carriage Return)
$\setminus n$	0x0A	LF	Zeilenvorschaltung (Line Feed)
∖a	0x07	BEL	Klingelzeichen (bell)
∖b	0x08	BS	Rückwärtsschrittzeichen (Backspace)
\mathbf{f}	0x0C	FF	Formularvorschub (Form Feed)
\t	0x09	HT	Tabulator
$\setminus \mathbf{v}$	0x0B	VT	Vertikaler Tabulator
\mathbf{h}	0xhh		hex value \x00\xFF
//	0x5C	\	Backslash
\"	0x22	"	Anführungszeichen

Antwortstring des Modems (CmdOk und Connect):

"CmdOk" und "Connect" Antwortstrings werden von den CR/LF Zeichen begrenzt. CR und LF müssen NICHT in die Stringdefinitionen einbezogen werden. Dasselbe gilt für '\n' und '\r'. Einzig die Zeichen, welche in "CmdOk" oder "Connect" eingegeben werden, mit Ausnahme der abgrenzenden CR/LF werden verglichen. Wenn die Antwort länger ausfällt, werden die zusätzlichen Zeichen ignoriert.

Z.B. entspricht "CONNECT" dem "<CR><LF>CONNECT 2400 <CR><LF>", das "<CR><LF>" und " 2400" werden nicht beachtet.

Das Modem soll nicht initialisiert werden, um Resultatcodes mit der Länge eines einzelnen Zeichens (zum Beispiel "0") zurückzuschicken, da dies nicht funktionieren wird. Stringwerte, umgeben von CR/LF Zeichen, müssen zurückgesendet werden (siehe auch Hayes-Befehl "V1"). Das Modem soll nicht so initialisiert werden, dass es keine Antwortstrings zurückschickt. Antwortstrings werden beim Anwählen der Telefonnummer benötigt, um den Aufbau der Verbindung zu überwachen (siehe auch Hayes-Befehl "Q0").

Hochgeschwindigkeitsmodems mit Datenkompression und Fehlerkorrektur

Datenkompression und Fehlerkorrektur sind <u>micht kompatibel</u> mit dem S-Bus Break- und Parity-Mode und müssen abgeschaltet werden. Normalerweise wird der Hayes-Befehl "&Q0" dies erreichen. Am besten wird Init="AT&Q0\r" verwendet (oder ein vordefinierter Modemtyp [Hayes Compatible High-Speed]).

Detektion des Aufbaus der Verbindung (Call progress detection)

Einige Modems sind in der Lage ausfindig zu machen, ob die Linie besetzt ist oder ob kein Summton vorhanden ist. In solchen Fällen wird angeraten, diese Funktionen mit dem "Init" String zu aktivieren. Damit wird die Wiederwahl schneller ausgeführt, da der Zustand der Linie und kein Abwarten von abgelaufenen Timeouts verwendet werden.

7.5 Verbindung über das öffentliche Telefonnetz

7.5.1 Aufbau

DTE: Data Terminal Equipment (Datenendgeräte)

DCE: Data Communication Equipment (Datenübertragungsgeräte)

Kabel

PCD-Schnittstellen, welche S-Bus PGU mit Modems unterstützen

Der PGU-Schnittstelle (PGU-Port) auf der PCD fehlen einige wichtige Signale, welche ein Verwenden von Modems für öffentliche Telefonnetze auf diesem Port unmöglich machen. Die PCD verlangt 5 Kontrollsignale (RTS, CTS, DTR, DSR, DCD) zur Steuerung des Modems.

Folgende Ports unterstützen die S-Bus PGU mit den Modems:

PCD1.M120/M130:	Port 1 (RS 232)	
PCD2:	Port 1 (RS 232)	
PCD4:	Port 1 (RS 232)	mit Busmodul PCD4.C120
		oder C340
PCD6.M540:	Port 2 (RS 232)	
PCD6.M1/2:	alle RS 232 Ports	(03)
PCD6.M300:	alle RS 232 Ports	(03)

7.5.2 Konfigurierung der PCD

- 1. Wahl der entsprechenden Hardware mit dem Menü "Hardware and memory"
- 2. Aufruf des Untermenüs "S-Bus communication"

SAIA PCD PROGRAMMING UTILITIES CONFIGURATOR \$1	9B S-BUS COMMUNICATIONS
Station number (0254) 1 (255 = No S-BUS support)
S-BUS PGU PORT CONFIGURATION - FOR CPU TYPE P	CD4
PGU Port Allocation: CPU PGU PORT	
PCD4: Only one PGU port alloued, both CPUs can be accessed through it.	
PGU port baud rate . (11038400) 9600 S-BUS mode (Break/Parity) Break PGU via Public Line Modem Yes	NOTE Changes do not take effect until a "CONFIGURE S-BUS" comparison is done from the
S-BUS TIMING (0=default): IS delay in mS (0, or 115000) 0 Timeout in mS (0, or 115000) 0 IN delay in mS (0, or 115000) 0	"Up/download" menu, or until "SDMLD /S" is executed from the DOS prompt.
Press SPACE to select the port, ARROW moves cu	rsor, ESC or ENIER accepts. F1=Help

- Stationsnummer an PCD vergeben (0 ... 254)
- PGU-Port bestimmen, welches mit dem Modem verwendet werden soll
 <u>Merke</u>: das Port 0 kann im Zusammenhang mit einem
 - Modem **nicht** verwendet werden
- Baudrate für das eigene Modem wählen
- S-Bus-Modus: Break oder Data wählen
- 'YES' für PGU via PLM bestätigen

3. Im Menü "Modem for SAIA PCD" das zu verwendende Modem wählen:

SAIA PCD PROGRAMMING UTILITIES C	ONFIGURATOR \$19B	MODEM FOR SAIA PCD
If using a public line (dial-up "S-BUS communications" screen's Then select from this screen th the PCD. The modem configuratio which can be edited with any AS control strings are needed, one the modem into "auto-answer mod If the PCD contains RAM, these "CONFIGURE S-BUS" command from from the DDS prompt. If the PCD be programmed.) modem on the PCD' "PGU via Public L: e type of modem wh: n is defined in a f CII text editor suc to reset the moder e" so that it will strings must be loc the "Up/download" r contains EPROM mer	's S-BUS PGU port, set the ine Modem" flag to "Yes". ich will be connected to file called MODEM.DAT, ch as PE or EDIT. Only two m, and another to initialize answer an incoming call. aded into the PCD using the menu, or with "SDNLD /S" mory, then new EPROMs must
SAIA PCD modem name Hayes Com FCD MODEM COMMAND STRINGS Reset modem "AT2\r"	patible High-Speed	I
Initialize moden "AT&QOSO= Press SPACE to select modem type	2\r" , ENTER or ESC acce	epts.
		F1=Help

Wenn das einzusetzende Modem oder der entsprechende Befehlstrings nicht gefunden wird, kann ein eigenes Modem in der Datei "modem.dat" editiert werden (siehe auch die Konfigurierung der PCD-Utilities für das eigene Modem in Kapitel 7.4)

4. Die Änderungen und die gewählten Werte sind in die PCD zu laden. Dabei ist zuerst das PGU-Protokoll im "Connect" Menü zu wählen, danach kann mit dem "Up/Download"-Programm der Befehl "Configure S-Bus" ausgeführt werden.
7.5.3 Konfigurierung des PC (PG3)

1. Es ist das eigene Modem mit dem Menü "Modem for PC" zu wählen:

MODEM COMMAND STRINGS - Reset modem Initialize modem Dial command prefix Dial command suffix Hangup command Select command mode SoBox delay character Auto-answer on Auto-answer off RESPONSES FROM MODEM - OK response Connected response	"AIZ\r" "AI&QO\r" "AIDI" "\r" "AIDO\r" "AISO=1\r" "AISO=0\r" "OK" "CONNECT"		
MISCELLANEOUS Connect timeout (secs)	45	Dial retries	2

Wenn das einzusetzende Modem oder der entsprechende Befehlstrings nicht gefunden wird, kann ein eigenes Modem in der Datei "modem.dat" editiert werden (siehe auch die Konfigurierung der PCD-Utilities für das eigene Modem in Kapitel 7.4)

2. Im Untermenü "Serial Port for PC", ist zu überprüfen, dass die S-Bus Übertragungsrate und die Zeiteinstellungen mit dem eigenen Modem übereinstimmen:

SAIA PCD PROGRAMMING UTILITIES CONF	IGURATOR \$19B	SERIAL PORTS FOR PC						
Up to four serial ports (COM1COM4) may be present in your PC. Select the port for communications in PGU mode (via the PCD's PGU port or the PCD8.P800 on the PCD6), S-BUS mode over an S-BUS network or via a modem, and for the EPROM Programmer. The same ports can be shared if required.								
Serial ports present	COM1							
Serial port for PGU connection	COM1 Ba	ud rate 9600						
Serial port for EPROM Programmer	COM1 Ba	ud rate 9600						
Serial port for S-BUS connection	COM1 Ba	ud rate 9600						
- S-BUS TIMING FOR PC								
TS delay in mS (0, or 115000) Timeout in mS (0, or 115000)	0 0 0 T 0	= Use minimum default values						
TN delay in mS (0, or 115000) Break length (characters, 125)	0J 7_	r S-BUS "Break" mode only						
Press SPACE to select the port, ARI	IOW moves curso	r, ESC or ENTER accepts. F1=Helm						

Solange keine Verbindungsprobleme auftreten, ist es nicht ratsam, Standardparameter der S-Bus Zeiteinstellungen zu ändern.

TS delay:	Training Sequence Delay, in Millisekunden. Dies ent- spricht der Zeitverzögerung zwischen dem Setzen des RTS (Request To Send) und der Meldungsübermittlung.
Timeout:	Response time-out in Millisekunden. Dies entspricht dem Timeout bis zum Empfangsende der Meldung.
TN delay:	Turnaround-Zeit in Millisekunden. Minimalzeit zwischen dem Ende einer Antwort und der Übermittlung des näch- sten Telegramms. In dieser Zeitspanne kann die entfernt installierte Station auf Empfangsmodus zurückschalten. Das TN delay ist speziell bei Einsatz vom PCD7.T100- Repeatern oder von PLMs wichtig.
	TS delay, Timeout und TN delay sollten auf den tiefsten erlaubten Wert gesetzt werden. Wenn der Wert (TS delay + TN delay) grösser ist als 500 ms wird das "Debug" Pro- gramm <u>nicht funktionieren</u> . Die PCD wird alle 500ms ab- gefragt und die Bearbeitungszeit würde wesentlich verlän- gert. Das Timeout sollte also so kurz wie möglich gewählt werden.
	Das TN delay ist sehr kritisch, Timeout und TS delay sind normalerweise beide auf 0, d.h. Standardwerte werden verwendet. Das Antwort-Timeout entspricht der Zeit, wäh- rend welcher der PC bis zum Start der Antwortmeldung warten wird. Diese Zeit wird auf die nächsten 55 ms aufge- rundet, da die interne PC Uhr mit 55 ms getaktet ist. Nach Empfang des ersten Zeichens verwendet der PC ein Time- out zwischen den Zeichen von 55 ms.
	Die "Break length" ist die Länge des Breaksignals in Zeiteinheiten, welche der Übermittlung eines einzelnen Zeichens entsprechen. Das Breaksignal meldet der entfernt installierten Station, dass ein neues Telegramm gesendet wird. Die Standardeinstellung entspricht der Zeit, welche für die Übermittlung von 4 Zeichen benötigt wird. Gewisse Modems benötigen jedoch eine längere Zeit, um das Breaksignal zu registrieren. Normalerweise sollte diese Zeit nie grösser sein als 10, ansonsten der Datendurchlauf behindert wird.

7.5.4 Aufbau der Verbindung

- 1. PCD und Modem miteinander verbinden. Die PCD muss nicht unbedingt programmiert sein.
- 2. Modem an das öffentliche Telefonnetz anschliessen.
- 3. Ein- und Abschaltsequenz durchführen, um sich der korrekten Initialisierung des Modems durch die PCD zu vergewissern.
- 4. Aus dem "Connect" Menü:

SAIA PCD PROGRAMMING UTILITIES \$198							
This menu defines and makes the online connection to the PCD. For connection directly to a local PCD's PGU port use PGU MODE. For connection to an S-BUS network or via a modem, select S-BUS MODE and enter the station number. number. Enter a telephone number for dial-up modems, or leave it blank for private line modems. For a PCD4, either CPU 0 or CPU 1 can be connected.							
Action, press SPACE to select CONNECT VIA MODEM							
CPU number (01) 0							
S-BUS station number (0255) 1_{-} (255=Read station number)							
Number to dial (F2=Phonebook) 0,004137727111							
Comms mode (PGU or S-BUS) S-BUS MODE 0 (BREAK): COM1, 9600							
Enter number (F2=Phonebook), ABROU or TAB moves, ENTER executes, ESC aborts. Configuration: F3=S-BUS F4=Download S-BUS F5=Serial ports F6=Moden F1=Help							

- Für den COMMS-Modus das S-Bus-Modus 0 (BREAK) Protokoll wählen
- CONNECT VIA MODEM wählen
- Eingegeben der PCD-Stationsnummer
- Eingeben die Telefonnummer Die Telefonnummer kann jede Zahl oder jedes Zeichen beinhalten, welches vom Modem unterstützt wird. HAYES Modems generieren mit ',' eine Pause von einer Sekunde. Die Telefonnumer kann aus einem anwender-editierbaren Telefonbuch durch Betätigen der Funktionstaste <F2> aufgerufen werden. Dabei muss sich der Cursor im Feld "Number to dial" befinden. Dieses Telefonbuch mit dem Dateinamen "phones.dat" kann mit einem ASCII-Texteditor editiert werden.
- Auf Taste <return> drücken, um die Verbindungen herzustellen.

Der PC startet mit der Initialisierung des Modems. Nach einigen Sekunden ertönt der Summton, der Wählprozess ist akustisch vernehmbar. Dieser kann durch Drücken der ESCape Taste unterbunden werden. Die letzte Linie auf dem Bildschirm gibt Auskunft über das Voranschreiten des Verbindungsaufbaus.

Bei erfolgreich hergestellter Verbindung schalten die Utilities auf das Hauptmenü zurück. Die erste am Bildschirm erscheinende Zeile zeigt, dass diese Verbindung hergestellt worden ist.

7.5.5 Störungsbehebung

Problem 1: Das PCD-Modem gibt keine Antwort auf einen ankommenden Anruf.

Kontrolle, ob sich das Modem im Auto-Answer-Modus befindet:

- Leuchtet die LED auf der Frontplatte?
- Ist das Kabel korrekt angeschlossen?
- Ein- und Ausschalten des Gerätes und betrachten der Datenempfangs-LED des PCD-Modems. Es kann dabei festgestellt werden, ob die PCD die Initialisierungssequenz liefert.
- **Problem 2:** Nach erfolgter Wahl der Telefonnummer erscheint die Meldung "connected to remote modem". Ein Neuanwählen wird jedoch sofort wieder ausgeführt.

Kontrolle des Modem-Antwortstrings:

- Kontrolle der entsprechenden Antwortstrings in der Modem-Daten-Datei.
- Kontrolle der Modemparameter V1, W0, X4
- **Problem 3:** Nach Herstellung der Verbindung mit dem entfernt installierten Modem ist eine Online-Schaltung mit dem S-Bus Protokoll nicht möglich. Fehlermeldung im 'connect menu': "No response from PCD"
 - Kontrolle der S-Bus Stationsnummer
 - Wenn die DTE-Übertragungsrate des PCD-Modems tiefer ist als diejenige der DTE des PG3-Modems, dann muss der Wert des Timeouts PG3 der tieferen Rate angepasst werden.
 - Kontrolle der Parameter des Modem-Setups.
- **Problem 4:** Mittels der Programmlade-Utilities wurde die Konfigurierung auf einem S-Bus PGU-Port der PCD geändert (zum Beispiel wurde die Baudrate verändert). Das Modem war mit diesem Port verbunden, jedoch wurde der neue Wert nicht in Betracht gezogen.

Um eine modifizierte Konfigurierung zu aktivieren muss das Modem ausund wieder eingeschaltet werden. Das heisst, dass die neue Konfigurierung nicht in Betracht gezogen wird, während dem das Modem mit dem S-Bus PGU-Port verbunden ist.

Es ist jedoch möglich, dass das Modem aus irgend einem Grund nicht funktionieret. In solchen Fällen wird angeraten, einen seriellen Schnittstellenanalysator zwischen PG3 und Modem, oder zwischen PCD und Modem zu schalten (zum Beispiel SANALYS oder RSO). Damit können vom Modem gesendete und empfangene Telegramme analysiert werden.

7.5.6 Beendung einer Verbindung

Aus dem "Connect" Menü ist die Modemoption "HANG UP" zu wählen:

Wenn vor dem Verlassen der PCD-Utilities vergessen wird die Verbindung abzubrechen, erfolgt das Aufhängen automatisch.

7.6 Beispiel eines PCD-Programmes (mit Modem)

Dies ist ein Programmbeispiel, welches S-Bus Kommunikationen zwischen einer PCD und einem Leisystem oder dem Programmiergerät zeigt.

Die Kommunikation kann durch:

- die PCD (abgehender Anruf)
- das Leitsystem (ankommender Anruf)
- das PG3

eingeleitet werden. Dem Programm liegt eine GRAFTEC-Struktur zugrunde.

Verwendung:

COB	x 0
 CSB	MODEM
 ECOB	

Abgehender Anruf:

Um einen abgehenden Anruf einzuleiten, muss das Flag "CALL" auf "H" gesetzt werden. Die PCD wird dann versuchen, eine Verbindung mit dem entfernt installierten PC herzustellen. Wenn dies erfolgreich verläuft, wird die PCD auf den S-Bus Slave-Modus umgeschaltet und kann dann vom Leitsystem abgefragt werden. Nach dem Lesen aller Daten setzt der zentrale Computer das CALL-Flag zurück. Bei einer erfolglosen oder unterbrochenen Verbindung wird der zentrale Computer nach einer gewissen Zeit ("redial_tim") neu angerufen. Dies wird wiederholt, bis das CALL-Flag zurückgesetzt wird (durch das PCD-Anwenderprogramm oder den entfernt installierten PC). Das Flag "CONNECT" wird bei gültiger Verbindung auf "H" gesetzt. Bei längerdauernder Verbindung als "commtime" wird die PCD automatisch aufhängen.

Ankommender Anruf:

Die PCD beantwortet jeden ankommenden Anruf eines zentralen PCs oder den SAIA Programming Utilities. Bei hergestellter Verbindung werden die Flags "CONNECT" und "INC_CALL" auf "H" gesetzt, bis die Verbindung unterbrochen wird. Bei einer länger als "commtime" dauernden Verbindung wird die PCD automatisch aufhängen. Mit Hilfe des auf Distanz einsetzbaren Programmier-Werkzeugs kann der Anwender diese automatische Aufhängeprozedur desaktivieren.

Modem	EQU	SB 0	; Modem: Senden/Empfangen
CALL	EQU	F 8100	; CALL-Flag
CONNECT	EQU	F 8101	; Gibt eine gültige Verbindung an
INC_CALL	EQU	F 8102	; Meldet einen ankommenden Anruf
dcd_f	EQU	F 8103	; Detektionsflag für Träger
diag_f	EQU	F 8150	; erstes von 8 Diagnose-Flags
xbsy	EQU	F 8156	; Xbsy-Flag (soll diag_F + 6 sein)
diag_f0	EQU	F 8160	; FULL S-Bus Diagnose (8 Flags)
xbsy_sb	EQU	F 8166	; FULL S-Bus Xbsy (=diag_f0+6)
diag_r	EQU	R 4090	; Diagnose-Register
diag_r0	EQU	R 4091	; FULL S-Bus Diagnose
pcd_ident	EQU	R 4095	; PCD Identifikationsregister
timer	EQU	Τ0	; Timer durch SB Modem verwendet
rd_timer	EQU	T 1	; Timer für das Neuanwählen
dialnb	EQU	TEXT 0	; Anrufnummerstring
resmod	EQU	TEXT 1	; Modenrückstellstring
initmod	EQU	TEXT 2	; Modeminitialisierungsstring
sasioff	EQU	TEXT 3	; SASI OFF
sasioffd	EQU	TEXT 4	; SASI OFF mit Zeitverzögerung
sasidiag	EQU	TEXT 5	; SASI Diagnose
sasisb	EQU	TEXT 6	; SASI Slave S-Bus via Modem
sasimc	EQU	TEXT 7	; SASI C-Modus
pcd_number	EQU	1	; PCD Nummer
smod	EQU	1	; Serieller Kanal für Modem
dcd	EQU	2	; Trägerdetektionssignal
sec1	EQU	10	; 1s Zeitverzögerung
off_delay	EQU	15	; Zeitverzögerung vor SASI OFF (in Sek.)
sec3	EQU	30	; 3s Zeitverzögerung
CD_time	EQU	450	; Maximale Wartezeit für Trägerdetektion
redial_tim	EQU	600	; Timeout Neuanwahl
commtime	EQU	1800	; Maximale Kommunikationszeit
baud	EQU	2400	; Übertragungsrate für Modemverbindungen
Main	EQU	COB 0	; Hauptprogramm

; Textdefinitionen

; Die folgenden Texte können für ihr Modem angepasst werden.

; Nummer zum Anwählen

TEXT dialnb "ATDT004137727111<CR>"

;-- String zum Zurücksetzen des Modems (Modem reset string)--

TEXT resmod "ATZ<CR>"

;-- String zu Initialisieren des Modems (Modem init string) --TEXT initmod ""

; -----Folgende Texte sollen nicht geändert werden

;-- SASI OFF --

TEXT sasioff "MODE:OFF;"

;-- SASI OFF mit Zeitverzögerung --

TEXT sasioffd "MODE:OFF,",off_delay,";"

;-- SASI DIAG --

TEXT sasidiag "DIAG:",diag_f0.T,",",diag_r0.T,";"

;-- SASI S-Bus --

TEXT sasisb "UART:",baud,";MODE:SS0;DIAG:",diag_f.T,",",diag_r.T,";"

;-- SASI C-Modus --

TEXT sasimc "UART:",baud,",8,N,1;MODE:MC0;DIAG:",diag_f.T,",",diag_r.T,";"

; Initial Step 0 ; Der hier beg	ginnende Coc	le wird in den XOB	- 16 kopiert
\$init	SASI	smod sasidiag	; Deklariert Diagnose-Flags
\$endinit			
; TR 0	SICL	smod dcd	Anruf oder Neuanwahl ; Lese und speichere das CD-Signal
	OUT ;	dcd_f	
	STH	CALL	; Anruf-Initialisierung
	ANL	rd_timer	; und Zeit zum Neuanrufen
	ANL	dcd_f	; und Modem abhängen
	ANL	xbsy_sb	; und OK zur Ausführung des SASI OFF
; Macro Step Init Mo	odem		-
, 51 21	SASI	smod sasioff	; Entassigniert den seriellen Kanal
; TR 21			Xbsy
: ST 22	STL	xbsy_sb	; Wartet bis zum Ende des SASI OFF Modem zurücksetzen
,	SASI	smod sasime	; Eingabe des MC-Modus
	ACC	H .	
	SOCL	smod 0	; Setze RTS
	SOCL	smod 1	; Setze DTR
	STXT	smod resmod	; Sende Modenrückstellstring
	LD	timer sec1	; 1s Zeitverzögerung
; TR 22			-Zeit 1 sec
	STL	timer	; Warte bis Text übertragen ist
· ST 23	ANL	xbsy	, und Timer abgelauten Initialisiere Modem
, 51 25	STXT	smod initmod	; Sende Modeminitialisierungsstring
	LD	timer sec1	; 1s Zeitverzögerung
;			-
; TR 1			-Zeit (1s)
	ANL	xbsy timer	; Text vollstandig gesendet ; und Timer abgelaufen
; ST 1			-Wähle Telefonnummer
	STXT	smod dialnb	; Sende Anwahlbefehl
	LD	timer CD_time	; Lade max. Zeit für CD Detektion
; TR 2		_	-Wähle Timeout
	SICL	smod dcd	; Lese DCD Signal
	OUT	dcd_f	; und speichere es
	STL	timer	; Zeit abgelaufen?
	ANL	dcd_f	

; ST 2			Lade Neuanwähltimer
	LD	rd_timer	; Lade Neuanwähltimer
		redial_tim	
	SASI	smod	; Rückkehr zu FULL S-Bus
		sasioff	VDCV
; TR 3	стт	where ab	XBSY
· ST 3	SIL	xUSY_SU	FULL S-Bus
: Um sicher	zustellen, da	uss der SASI OFF-I	Befehl vollständig ausgeführt worden ist, muss
; 3 Sekunde	n gewartet v	werden.	
	ĽD	timer	; Lade 3 Sekunden
		sec3	
	RES	CONNECT	; Setzt das Verb.flag (connect flag) zurück
	RES	INC_CALL	; Setzt das ankommende Anrufsflag zurück
; TR 4			Zeit 3 sec
	STL	timer	
	ANL	XDSY_SD	
; TR 5			Verbindung OK ?
	STH	dcd_f	; Verbinden ? (CD hoch)
;Macro Step Slave	S-Bus		
; ST 31			Entassigniere serielle Linie
	SASI	smod	; Entassigniere seriellen Kanal
· TP 31		sasion	Yhey
, IK 51	STL	xhsv sh	· Warte bis zum SASI OFF-Ende
: ST 32			
,	SASI	smod	; Reassigniere seriellen Kanal
		sasisb	; in SD0-Modus
	SOCL	smod	; Setze DTR
		0	
	SOCL	smod	; Setze RTS
		1	
; • TD 6			Loor
· ST 6			Verbindung aktiv
,510	LD	timer	· lade maximale Kommunikationszeit
		commtime	
	SET	CONNECT	; gibt Verbindung an
; TR 7			Verbindung aufgelöst
	SICL	smod	; Warte bis kein DCD
		dcd	
	ACC	С	

; ST 7	'			Aufhängen
	; Aufhängen	ist nicht no	twendig, da die Ve	rbindung schon unterbrochen ist. Falls es aber
	; nicht ein a	nkommende	r Anruf war, muss z	zum FULL-S-Bus zurückgeschaltet werden.
		STH	INC_CALL	; Wenn kein ankommender Anruf
		JR	H end	
		SASI	smod sasioff	; dann gehe zurück zu FULL S-Bus
	end:			
; TR 8	3			Xbsy
		STL	xbsy_sb	; Warte bis Ende des SASI OFF
; TR 9)	~~~~		Zeit abgelauten?
		STL	timer	
; ST 9)			
	; Führe ein	SASI OFF 1	nit Zeitverzögerung	aus, um dem PG3 Zeit zu lassen, die Kontrolle
	, uber uas r	hmuna ainaa	SASLOEE wind on	ll Thängen
	; Die Ausiu	nrung eines	SASI OFF wird at	Inangen.
		5A51	smod	; SASI OFF mit Zeitverzogerung
TD 1			sasiona	7/1
; 1 K 1	10			Xbsy
		STL	xbsy_sb	; Warte bis Ende des SASI OFF
 : TR 1				Träger detektiert ?
,		STH	dcd f	: DCD Hoch ?
: ST 1	1			Ankommender Anruf
,~11	-	SET	INC CALL	· Zeigt einen ankommenden Anruf an
\cdot TR 1	2			I eer
,	-			1.001

7.7 Konfigurierung eines Gateway Master Ports (GMP)

Das Master Gateway Port wird mit dem "Gateway Master Port" Menü im Konfigurationsmenü der PG3 Utilities konfiguriert. Das Menü zeigt drei vordefinierte Angaben :

- Den CPU-Typ, wie im "Hardware and memory"-Menü definiert.
- Die S-Bus Stationsnummer, wie im "S-Bus communications"-Menü definiert.
- Das S-Bus PGU-Port, welches ebenfalls im "S-Bus communications" Menü definiert ist.

SAIA PCD PROGRAMMING UTILITIES CO	NFIGURATOR	\$19B GATEWAY MASTER PORT
The PCD must be assigned a station screen. The gateway master port	on number f can't be th	rom the "s-bUs communications" e same port as the S-BUS PGU port.
CPU TYPE: PCD4 S-BUS STATION: 1	S-BUS PGU	PORT: 1
Gateway master port (None, 03)	2	
Baud rate (11038400) Mode (Break/Parity)	9600 Parity	NOTE
GATEWAY PORT TIMING (0=default): TS delay in mS (0, or 115000)	θ	operation is done from the "Up/download" menu, or until
Timeout in mS (0, or 115000) TN delay in mS (0, or 115000) Break length (characters, 125)	θ θ 4	"SDNLD /S" is executed from the DOS prompt.
	-	
Press SPACE to select the port, A	RROW moves	cursor, ESC or ENTER accepts. F1=Help

Weiter müssen acht für die Initialisierung des Gateways wichtige Parameter definiert werden.

Gateway master port (GMP)

Dieses Feld spezifiziert das als Gateway Master Port zu verwendende Port. Bei Wahl der Option "None" wird kein Gateway Master Port konfiguriert.

Port on CPU (PCD6 only)

Dieses Feld gilt nur für PCD6 und definiert auf welcher CPU das Gateway Master Port konfiguriert werden soll.

Baud rate

Die Übertragungsrate des Gateway Master Ports ist zwischen 110 und 38'400 Baud einstellbar, dies wie bei jedem Standard-S-Bus Kommunikationsprotokoll.

Mode

Dieses Feld ermöglicht die Definition des Break-Modus, des Data-Modus oder des Parity-Modus.

TN delay

Die Turnaround Zeit wird in Millisekunden angegeben und entspricht der minimalen Zeit, welche zwischen dem Ende einer Antwort und der Übertragung des nächsten Telegramms verstreicht. TN-delay gibt der entfernt installierten Station Zeit, auf Empfangsmodus zurückzuschalten. Das TN delay ist speziell bei Verwendung eines PCD7.T100 Repeaters oder von PLMs wichtig. Bei Eingabe einer Null als TN delay werden die Standardwerte (default values) verwendet. Diese können im Konfigurations Help-Text (Funktionstaste F1), in den S-Bus Zeitangabefeldern und in der nachfolgenden Tabelle gefunden werden.

TS delay

Das Training Sequence Delay wird in Millisekunden angegeben und entspricht der Zeitverzögerung zwischen dem Setzen von RTS (Request To Send) und der Übertragung von Meldungen. Diese Grösse wird speziell im Zusammenhang mit Modems verwendet. Bei Eingabe einer Null als TS delay werden die Standardwerte (default values) verwendet. Diese können im Konfigurations Help-Text (Funktionstaste F1), in den S-Bus Zeitangabefeldern und in der nachfolgenden Tabelle gefunden werden.

Timeout

Die Dauer des Timeouts wird in Millisekunden angegeben und betrifft die Übermittlung zwischen dem Master Gateway Port und den an diesem angeschlossenen Slave(s). Dabei wird die maximale Zeit definiert, während welcher der Master warten wird, bevor nach einer Fehlübertragung ein Neuversuch gestartet wird. Die nachfolgend aufgeführte Tabelle beinhaltet die in Abhängigkeit von der Baudrate des Master Gateway Ports einzustellenden Werte der Timeouts in Millisekunden. Eine Anpassung dieser Werte bei Abweichung der TN- und TS-Verzögerungen von ihren respektiven Standardwerten (default values) ist vielleicht notwendig. Bei Eingabe einer Null werden die Standardwerte (default values) verwendet.

Baudrate	110	150	300	600	1200	2400	4800	9600	19200	38400
TN delay [ms]	27	20	20	5	3	2	2	1	1	1
TS delay [ms]	0	0	0	0	0	0	0	0	0	0
Timeout [ms] Br/Par	15000	9000	5000	3000	2000	1000	500	250	200	200
Timeout [ms] Data	15000	15000	7500	4500	3000	1500	750	375	300	300

Break length

Dieser Parameter spezifiziert die Anzahl Breakzeichen im Break-Modus (Modus 0). Der Standardwert (default) ist 4. Notizen

8. Anhang

Anhang A Kompatibilität bei Verwendung des S-Bus bei 38,4 KBaud

Die Übertragungsrate von 38.4 KBaud wird wie folgt unterstützt:

Firmware:	PCD1.M1x0 PCD2.M1x0 PCD4.Mxx0 PCD4.Mxx5 PCD4.M445 PCD6.M540 PCD6.M2x0 PCD6.M300	ab Version 001 ab Version 001 ab Version 003 ab Version 00B ab Version 00C (ev. V001) ab Version 002 ab Version 007 ab Version 001
Hardware:	PCD1.M1x0 PCD2.M1x0 PCD4.Mxx0 PCD4.Mxx5 PCD4.M445 PCD6.M540 PCD6.M2x0 PCD6.M300	alle Versionen ab Version A ab Version G alle Versionen alle Versionen ab Version C alle Versionen alle Versionen

Schnittstellentypen welche bei 38.4 KBaud eingesetzt werden können:

RS 422 und RS 485	alle
20mA current loop	keine
RS 232	einige, siehe unten aufgeführte Liste

Wegen des eingesetzten Treibermoduls kann bei den nachfolgend aufgelisteten RS 232 Schnittstellen ein einwandfreies Funktionieren bei 38.4 KBaud nicht garantiert werden. In den meisten Fällen konnte jedoch gezeigt werden, dass diese Schnittstellen auch bei 38.4 KBaud funktionsfähig sind.

PCD1.M1x0	Schnittstelle 0 (PGU) oder 1 *)
PCD2.M1x0	Schnittstelle 0 (PGU) oder 1 *)
PCD2.F520/F530	Schnittstelle 2
PCD4.C120	Schnittstelle 1
PCD4.C130	Schnittstelle 3
PCD4.C340	alle Schnittstellen *)
PCD6.M540	Schnittstelle 2
PCD6.M210	Schnittstellen 03
PCD6.M220/M230	Schnittstellen 2 und 3
PCD6.M300	alle Schnittstellen *)

*) mit dem Schnittstellenmodul PCD7.F120

Anhang B S-Bus PGU Schnittstellen und Kabel

Die nachfolgende Tabelle zeigt, welche der PCD1, PCD2, PCD4 und PCD6 Schnittstellen als S-Bus/PGU-Schnittstellen definiert werden können.

PCD-Typ	Schnittstelle	P8-PGU Kabel Typ PCD8. / Baudrate	S-Bus-PGU Kabel Typ/max. Baudrate	Konverter (optional)
PCD1.M1x0	0: RS 232 (PGU) Optional:		K111 / 38.4 KBaud	T120
	1: RS 232 oder RS 422/485		K111 / 38.4 KBaud Standard / 38.4 KBaud	T120
PCD2.M1x0 oder PCD2 M220	0: RS 232 (PGU) oder RS 485	K100, K110 oder K111/9.6 KBaud 	K111 / 19.2 KBaud Standard / 38.4 KBaud	T120
1 CD2.101220	1: RS 232 oder RS 422/485 2: RS 232		Standard / 38.4 KBaud Standard / 38.4 KBaud Standard / 19.2 KBaud	T120 T120
	3: RS 422/485		Standard / 38.4 KBaud	
PCD4.Mxxx mitC100	0: RS 232 (PGU)	K100, K110 oder K111/9.6KBaud	K111 / 38.4 KBaud	T120
PCD4.Mxxx mitC110	0: RS 232 (PGU) 1: CL	K100, K110 oder K111/9.6KBaud 	K111 / 38.4 KBaud 	T120
PCD4.Mxxx mitC120	0: RS 232 (PGU) 1: RS 232 2: CL 3: CL	K100, K110 oder K111/9.6KBaud 	K111 / 38.4 KBaud Standard / 19.2 KBaud 	T120 T120
PCD4.Mxxx mitC130	0: RS 232 (PGU) 1: RS 422/485 2: RS 422 3: RS 232	K100, K110 oder K111/9.6KBaud 	K111 / 38.4 KBaud Standard / 38.4 KBaud Standard / 38.4 KBaud Standard / 19.2 KBaud	T120 T140 T120
PCD4.Mxxx mitC340	0: RS232 (PGU) 1/2/3: RS 232 1/2/3: RS422/485 1/2/3: CL	K100, K110 oder K111/9.6KBaud 	K111 / 38.4 KBaud Standard / 38.4 KBaud Standard / 38.4 KBaud 	T120 T120
PCD6.M100	P8	P800 / 9.6 KBaud		
PCD6.M210	P8 0: RS 232 1: RS 232 2: RS 232 3: RS 232	P800 / 9.6 KBaud 	Standard / 19.2 KBaud Standard / 19.2 KBaud Standard / 19.2 KBaud Standard / 19.2 KBaud	
PCD6.M220	P8 0: RS 422/485 1: RS 422 2: RS 232 3: RS 232	P800 / 9.6 KBaud 	Standard / 38.4 KBaud Standard / 38.4 KBaud Standard / 19.2 KBaud Standard / 19.2 KBaud	 T140 T120 T120

Fortsetzung siehe nächste Seite

РСД-Тур	Schnittstelle	P8-PGU Kabel Typ PCD8, / Baudrate	S-Bus-PGU Kabel Typ/max. Baudrate	Konverter (optional)
	DO		Theorem Typ, mark Duddrate	(optional)
PCD6.M230	P8	P800 / 9.6 KBaud		
	0: CL 1: CL			
	1: CL 2: PS 222		Standard / 10.2 KPaud	 T120
	2. KS 232 3. RS 232		Standard / 19.2 KBaud	1120 T120
	5. KB 252		Standard / 19.2 KDadd	1120
PCD6.M250	P8	P800 / 9.6 KBaud		
	0: CL			
	1: CL 2: CL			
	2: CL 2: CL			
	5. CL			
PCD6.M260	P8	P800 / 9.6 KBaud		
	0: RS 422/485		Standard / 38.4 KBaud	
	1: RS 422/485		Standard / 38.4 KBaud	
	2: RS 422/485		Standard / 38.4 KBaud	
	3: RS 422/485		Standard / 38.4 KBaud	
PCD6.M300	4: RS 232 (PGU)		K111 / 38.4 KBaud	T120
	Optional:			
	0: RS 232 oder		K111 / 38.4 KBaud	T120
	CL oder			
	RS 422/485		Standard / 38.4 KBaud	
	1: RS 232 oder		K111 / 38.4 KBaud	T120
	CL oder			
	RS 422/485		Standard / 38.4 KBaud	
	2: RS 232 oder		K111 / 38.4 KBaud	T120
	CL oder			
	RS 422/485		Standard /38.4 KBaud	
	3: RS 232 oder		K111 / 38.4 KBaud	T120
	CL oder			
	RS 422/485		Standard /38.4KBaud	
PCD6.M540	0: RS 232 (PGU)	K100, K110 oder K111/9.6KBaud	K111 / 38.4 KBaud	T120
	1: RS 422/485		Standard / 38.4 KBaud	
	2: RS 232		Standard / 19.2 KBaud	T120
	3: CL			

Fortsetzung

P8 PGU: Programmierschnittstelle mit P8 Protokoll
S-Bus PGU: Programmierschnittstelle mit S-Bus Protokoll
Converter: Der optionale Anschluss eines Konverters an die S-Bus Schnittstelle ist möglich. Damit können Programmiereinheit und Netzwerkschnittstellentyp angepasst werden. (meistens RS232 → RS485)
Max. Baudrate: Max. Übertragungsrate für die Programmierschnittstelle. Für das S-Bus Protokoll kann die Baudrate zwischen 110...38'400 Baud betragen. Für das P8 Protokoll ist die

Baudrate auf 9'600 festgesetzt.

Kabel für die Programmierschnittstelle

PCD8.P800

Interfaceprozessor für das Programmiergerät mit Kabel und 25-poligem D-Sub Stecker. Dieses Gerät dient der Verbindung des PG (via PGU-Schnittstelle) zu den PCD6.M1.. und PCD6.M2..-Prozessormodulen. Der Interfaceprozessor unterstützt nur das P8 Protokoll. Ausführlichere Informationen sind dem PCD6-Hardwarehandbuch zu entnehmen.

PCD8.K101

Programmierkabel mit 25-poligem D-Sub Stecker für die Verbindung der Programmiereinheit (PC oder PCD8.P100) mit dem P8 Protokoll.

Dieses Kabel kann nur für die P8 PGU-Schnittstelle verwendet werden. Wenn ein "online" Programm aufgerufen wird (zum Beispiel der Debugger), wird das RTS-Signal der Schnittstelle durch die Programmiereinheit = H gesetzt. Die PCD-CPU erkennt die Programmiereinheit durch die Verdrahtung der Pins 6 und 8 des PGU-Steckers und assigniert automatisch die Schnittstelle mit dem P8 Protokoll.

DSR = 1 PG angeschlossen, assigniert mit P8 Protoko

DSR = 0 kein PG angeschl., deshalb auch keine Assignierung

PCD8.K110 (nicht mehr lieferbar, ersetzt durch PCD8.K111)

Programmierkabel mit 9-poligem D-Sub Stecker für den Anschluss der Programmiereinheit (PC oder PCD8.P100) mit dem P8 Protokoll.

Verwendung der Kabel wie für PCD8.K100

PCD8.K111

Programmierkabel mit 9-poligem D-Sub Stecker für den Anschluss der Programmiereinheit mit dem P8 oder dem S-Bus Protokoll.

Dieses Kabel kann für P8 und S-Bus PGU-Schnittstellen verwendet werden. Wenn ein Online-Programm aufgerufen wird, erlauben die Utilities (ab Version 1.7 für das PG3) der Programmiereinheit nicht nur die RTS sondern auch die DTR Schnittstellensignale zu prüfen.

Durch Evaluation des DSR-Signals, wird die PGU automatisch mit dem entsprechenden Protokoll assigniert.

DSR = 1	P8 Protokoll
DSR = 0	S-Bus Protokoll, wenn Schnittstelle für S-Bus konfi-
	guriert wurde, sonst keine Assignierung.

Kabel PCD8	Utility	Firmware	P8-PGU (Port 0)	S-Bus PGU (Port 0)	Bemerkungen
K111	neu	neu	ja	ja	Idealer Fall
K111	neu	alt	ja	nein	S-Bus nicht durch Firmware unterstützt
K111	alt	neu	nein	nein	Kabel nicht durch Utilities unterstützt keine Online-Verbindung möglich.
K111	alt	alt	nein	nein	Kabel nicht durch Utilities unterstützt keine Online-Verbindung möglich.
K100/K110	neu	neu	ja	nein	S-Bus nicht durch Kabel unterstützt könnte nicht auf PG gesetzt werden.
K100/K110	neu	alt	ja	nein	S-Bus nicht durch Firmware und Kabel unterstützt.
K100/K110	alt	neu	ja	nein	S-Bus nicht durch Utility und Kabel unterstützt
K100/K110	alt	alt	ja	nein	Einzig P8 Protokoll unterstützt.

Kompatibilität und Verwendung der Programmierkabel für PCD2, PCD4 und PCD6.M5.

Utility Version:	neu = ab	V1.7 (für das PG3)
Firmware Version:	neu = ab	PCD2.M1x0 - V001
		PCD4.Mxx0 - V003
		PCD6.M540 - V002
		PCD6.M1/M2 - V007

Standardkabel (Anschluss)

Es werden für den Anschluss der Programmiereinheit keine speziellen Kabel benötigt. Beispiele für die Zuordnung der Anschlussleiter und die Schnittstellenanschlüsse können im PCD-Hardwarehandbuch oder im Handbuch "Installationskomponenten für RS 485 Netzwerke" gefunden werden.

Achtung

Beim Anschluss von Nicht-SAIA Ausrüstungen an PCD RS422/485 Schnittstellen muss speziell auf die Polarität der Signale geachtet werden. SAIA identifiziert die Signalleitungen mit RX, /RX und TX, /TX. Nicht-SAIA Ausrüstungen identifizieren diese oft anders, zum Beispiel. +RX, -RX und +TX, -TX. Dies kann zu Verwechslungen führen.

Normalerweise gilt folgendes:

SAIA	Nicht-SAIA Ausrüstung	
RX	D	-RX
/RX	/D	+RX
TX	D	-TX
/TX	/D	+TX

Praktischer Hinweis:

Kommt auch bei vermeintlich korrekter Installation keine Verbindung zu Stande, lohnt sich erfahrungsgemäss ein Versuch mit vertauschten Datenleitungen!

Anhang C Firmware- und Softwarekompatibilität

<u>Anwenderstufe 2</u> (application level 2)

Firmware Version von welcher die Unterstützung für Anwenderstufe 2 gewährleistet wird:

PCD1.M1x0	- V001
PCD2.M1x0	- V001
PCD4.Mxx0	- V003
PCD4.Mxx5	- V00B
PCD6.M540	- V002
PCD6.M1/M2	- V007
PCD6.M300	- V001

RS232 und RTS Signal

Firmware bevor:

PCD2.M1x0	- V002
PCD4.Mxx0	- V004
PCD6.M540	- V003
PCD6.M2x0	- V008

Wenn die RS232 PCD-Schnittstelle mit den SASI-Anweisungen entsprechend SM2-, SM1-, SM0-, SS2-, SS1-, oder SS0-Modus assigniert ist, wird der Status der RTS-Kontroll-Leitung = H gesetzt. Dieses würde die Kommunikation blockieren, da die Transmitter aller Modems oder Konverter (RS232/485, RS422/485) auf dem Netzwerk nach der Initialisierung eingeschaltet würden.

Im Anwenderprogramm ist das RTS Signal sofort nach dem SASI-Befehl mittels SOCL zurück zu setzen.

Beispiel:

XOB	16	
SASI	3	; Assigniere Kanal 3
	10	; Definitionstext 10
ACC	L	
SOCL	3	; Kanal 3
	0	; RTS zurücksetzen
EXOB		

S-Bus Data-mode

Firmware Versionen welche den S-Bus Data-mode (SM2, SS2, GS2) unterstützen:

PCD1 Firmware	ab V002 (ev. VB1C)
PCD2 Firmware	ab V005 (ev. V\$45)
PCD4.xx5 Firmware	ab V00D (ev. V\$CA)
PCD6.M3 Firmware	ab V001 (ev. VB09)

Software Versionen welche den S-Bus Data-mode unterstützen:

PG3	ab V 2.1
PG4	ab V 1.4
SCOMM-DLL 32 bit	ab V \$114
SCOMM-DLL 16 bit	ab V \$14
C-Library 16 bit	ab V \$121
S-Bus Analyser	ab V \$007

S-BUS FIRMWARE KOMPATIBILITÄT

Charakteristik	PCD1.M1 PCD2.M1		PCD4.Mx0		PCD4.Mx5		PCD6.M5		PCD6.M2		PCD6.M3		Bemerkungen		
$FW \ge V.$	FW	HW	FW	HW	FW	HW	FW	ΗW	FW	HW	FW	HW	FW	HW	-
Stufe 1 (reduziertes Protokoll)	001	х	001	х	002	х	00B	Х	001	Х	007	Х	001	Х	
Stufe 2 bis 9'600 Baud	001	х	001	Α	003	Х	00B	Х	002	Х	007	Х	001	х	PCD8.K111 benötigt
Stufe 1 bis 38.4 KBaud	001	х	001	Α	003	G	00B	Х	002	С	007	Х	001	х	
Stufe 2 bis 38.4 KBaud	001	х	001	Α	003	G	00B	Х	002	С	007	Х	001	х	PCD8.K111 benötigt
bis 38.4 KBaud optimiert	001	Х	004	Α			00C	Х					001	Х	Kernel Änderungen
Broadcasting PCD als Master	005	Х	001	х	004	Х	00B	Х	003	Х	008	Х	001	Х	
Broadcasting PC als Master	001	х	003	Х	004	Х	00B	Х	003	Х	008	Х	001	Х	mit dem Debugger
Data-Mode	002	х	005	Х			00D	Х					001	Х	auch mit Gateway
Konfig. für Programm laden	001	х	004	Х	\$52	Х	00C	Х	\$41	Х			001	Х	neue Schaltfunktionen
Gateway	005	х	003	Х			00C	Х			009	Х	001	Х	
Modem: Private line	001	х	001	Х	002	Х	00B	Х	001	Х	007	Х	001	Х	
Public line	001	х	001	Х	003	Х	00B	Х	002	х	007	Х	001	х	
Reset/Init String	001	х	003	Х	005	Х	00B	Х	004	х	009	Х	001	х	
Modem +	001	х	003	Х	005	Х	00B	Х	004	Х	009	Х	001	Х	
Funk-Modem bis zu 4'800 Bd	001	х	003	Х	005	Х	00B	Х	004	Х	009	Х	001	Х	TFUL Mechanismus
RIO Funktionalität	001	х	005	Х			00D	Х					001	Х	aktif mit SASI
SRXM Extension	005	х	003	Х	005	Х	00B	Х	004	Х	009	Х	001	Х	lesen system info slave
STXMI und SRXMI	005	х	003	Х	005	Х	00B	Х	004	Х	009	Х	001	Х	transfer DB's
Write Stationsnr. (Debug)	001	х	004	Х	005	Х	00B	Х	004	х	009	Х	001	х	
XOB 17,18,19	001	х	003	Х	005	Х	00B	Х	004	х	009	Х	001	х	
S-Bus Master	005	Х	001	Х	003	Х	00B	Х	002	Х	007	Х	001	Х	

--- in dieser PCD nicht implementiert

X unabhängig von der Hardware Version

1) PCD1 wurde mit dem Slave Protokoll implementiert, ab FW Version V005 sind die Funktionen S-Bus Master und Gateway verfügbar.

2) PCD2 Version D, Modification 1, im Juli und August 1995 herausgegeben, braucht eine spezielle Firmware (\$ Version) um die Funktionalitäten des S-BUS verwenden zu können.

S-Bus Handbuch

Notizen

S-BUS SOFTWARE KOMPATIBILITÄT

Charakteristik	PCD	1.M1	PCD2.M1		PCD4	.Mxx0	PCD4.Mxx5		PCD6.M5		PCD6.M2		PCD6.M3	
$SW \ge V.$	P300	P400	P300	P400	P300	P400	P300	P400	P300	P400	P300	P400	P300	P400
Stufe 1 (reduziertes Protokoll)	2.0	1.3	1.7	1.21	1.6	1.21	1.6	1.21	1.6	1.21	1.6	1.21	2.1	1.4
Stufe 2 bis 9'600 Baud	2.0	1.3	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	2.1	1.4
Stufe 1 bis 38.4 KBaud	2.0	1.3	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	2.1	1.4
Stufe 2 bis 38.4 KBaud	2.0	1.3	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	2.1	1.4
bis 38.4 KBaud optimiert	2.0	1.3	1.7	1.21			1.7	1.21					2.1	1.4
Broadcasting PCD als Master	2.1	1.4	1.7	1.21	1.6	1.21	1.6	1.21	1.6	1.21	1.6	1.21	2.1	1.4
Broadcasting PC als Master	2.0	1.3	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	2.1	1.4
Data-Mode	2.1	1.4	2.1	1.4			2.1	1.4					2.1	1.4
Download Konfiguration	2.0	1.4	2.0	1.4	2.0	1.4	2.0	1.4	2.0	1.4			2.1	1.4
Gateway	2.1	1.4	1.9	1.3			1.9	1.3			1.9	1.3	2.1	1.4
Modem: Private line	2.0	1.3	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	2.1	1.4
Public line	2.0	1.3	1.7	1.3	1.7	1.3	1.7	1.3	1.7	1.3	1.7	1.3	2.1	1.4
Reset/Init String	2.0	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9	1.3	2.1	1.4
Modem +	2.0	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9	1.3	2.1	1.4
Funk-Modem bis zu 4'800 Bd	2.0	1.3	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	2.1	1.4
RIO Funktionalität	2.0	1.3	2.0	1.3			2.0	1.3						1.4
SRXM Extension	2.0	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	2.1	1.4
STXMI und SRXMI	2.0	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	2.1	1.4
Write Stationsnr. (Debug.)	2.0	1.3	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	1.9	1.21	2.1	1.4
XOB 17,18,19	2.0	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	1.9	1.4	2.1	1.4
S-Bus Master	2.1	1.4	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	1.7	1.21	2.1	1.4

--- in dieser PCD nicht implementiert

1) PCD1 wurde mit dem Slave Protokoll implementiert, ab FW Version V005 sind die Funktionen S-Bus Master und Gateway verfügbar.

2) PCD2 Version D, Modification 1, im Juli und August 1995 herausgegeben, braucht eine spezielle Firmware (\$ Version) um die Funktionalitäten des S-BUS verwenden zu können.

3) braucht immer die letzte Firmware-Version der PCD8.P100 (V003 - Juni 1996)

Anhang

S-Bus Handbuch

Notizen

Absender:	An:
Firma Abteilung Name Adresse	SAIA- Bahnh CH-32 http://
Tel.	GB: E
Datum	SAIA

SAIA-Burgess Electronics AG Bahnhofstrasse 18 CH-3280 Murten (Schweiz) http://www.saia-burgess.com

GB: Electronic Controllers

SAIA[®] S-Bus für die PCD-Familie

Falls Sie Vorschläge zu SAIA[®] PCD zu machen oder Fehler in diesem Handbuch gefunden haben, sind wir Ihnen für einen kurzen Bericht dankbar.

Ihre Vorschläge: