SAIA-Burgess Electronics

SWITCHES • MOTORS • CONTROLLERS

Positioniermodul für Servoantriebe mit Linearund Kreisinterpolation PCD4.H4..

Ausgabe 26/752 D1

GB: Electronic Controllers	Telefon	026 / 672 72 72
	Telefax	026 / 672 74 99

SAIA-Burgess Gesellschaften

Schweiz	SAIA-Burgess Electronics AG Freiburgstrasse 33 CH-3280 Murten ☎ 026 672 77 77, Fax 026 670 19 83	Frankreich	SAIA-Burgess Electronics Sàrl. 10, Bld. Louise Michel F-92230 Gennevilliers ☎ 01 46 88 07 70, Fax 01 46 88 07 99
Deutschland	SAIA-Burgess Electronics GmbH Daimlerstrasse 1k D-63303 Dreieich ☎ 06103 89 060, Fax 06103 89 06 66	Niederlande	SAIA-Burgess Electronics B.V. Hanzeweg 12c NL-2803 MC Gouda 2 0182 54 31 54, Fax 0182 54 31 51
Österreich	SAIA-Burgess Electronics Ges.m.b.H. Schallmooser Hauptstrasse 38 A-5020 Salzburg ☎ 0662 88 49 10, Fax 0662 88 49 10 11	Belgien	SAIA-Burgess Electronics Belgium Avenue Roi Albert 1er, 50 B-1780 Wemmel ☎ 02 456 06 20, Fax 02 460 50 44
Italien	SAIA-Burgess Electronics S.r.l. Via Cadamosto 3 I-20094 Corsico MI ☎ 02 48 69 21, Fax 02 48 60 06 92	Ungarn	SAIA-Burgess Electronics Automation Kft. Liget utca 1. H-2040 Budaörs ☎ 23 501 170, Fax 23 501 180

Vertretungen

Gross- britannien	Canham Controls Ltd. 25 Fenlake Business Centre, Fengate Peterborough PE1 5BQ UK ☎ 01733 89 44 89, Fax 01733 89 44 88	Portugal	INFOCONTROL Electronica e Automatismo LDA. Praceta Cesário Verde, No 10 s/cv, Massamá P-2745 Queluz
Dänemark	Malthe Winje Automation AS Håndværkerbyen 57 B DK-2670 Greve 270 20 52 01, Fax 70 20 52 02	Spanien	Tecnosistemas Medioambientales, S.L. Poligono Industrial El Cabril, 9 E-28864 Ajalvir, Madrid 2 91 884 47 93, Fax 91 884 40 72
Norwegen	Malthe Winje Automasjon AS Haukelivn 48 №1415 Oppegård ☎ 66 99 61 00, Fax 66 99 61 01	Tschechische Republik	ICS Industrie Control Service, s.r.o. Modranská 43 CZ-14700 Praha 4 ☎ 2 44 06 22 79, Fax 2 44 46 08 57
Schweden	Malthe Winje Automation AB Truckvägen 14A S-194 52 Upplands Våsby ☎ 08 795 59 10, Fax 08 795 59 20	Polen	SABUR Ltd. ul. Druzynowa 3A PL-02-590 Warszawa ☎ 22 844 63 70, Fax 22 844 75 20
Suomi/ Finnland	ENERGEL OY Atomitie 1 FIN-00370 Helsinki ☎ 09 586 2066, Fax 09 586 2046		
Australien	Siemens Building Technologies Pty. Ltd. Landis & Staefa Division 411 Ferntree Gully Road AUS-Mount Waverley, 3149 Victoria ☎ 3 9544 2322, Fax 3 9543 8106	Argentinien	MURTEN S.r.I. Av. del Libertador 184, 4° "A" RA-1001 Buenos Aires 2 054 11 4312 0172, Fax 054 11 4312 0172

Kundendienst

USA	SAIA-Burgess Electronics Inc.
	1335 Barčlay Boulevard
	Buffalo Grove, IL 60089, USA
	🕿 847 215 96 00, Fax 847 215 96 06

Issue: 22.11.2000

SAIA[®] Process Control Devices

Positioniermodul für Servoantriebe mit Linearund Kreisinterpolation

PCD4.H4x0

SAIA-Burgess Electronics AG 1997. Alle Rechte vorbehalten Ausgabe 26/752 D1 - 06.1997

Technische Änderungen vorbehalten

Anpassungen

Handbuch: PCD4.H4x0 - Positioniermodul für Servoantriebe mit Linear-und Kreisinterpolation - Ausgabe D1

Datum	Abschnitt	Seite	Beschreibung

Seite

Inhalt

1.	Einführung	
2.	Technische Daten	
2.1 2.2	PCD4.H4xx PCD4 Konfigurierung	2-1 2-4
3.	Präsentation	
3.1 3.2.	Frontplatte und LEDs Gedruckte Leiterplatte	3-1 3-3
4.	Blockschaltbild	
5.	Anschlüsse	
5.1. 5.2. 5.3.	Klemmenanschlüsse des Bus-Moduls (Übersicht) Digitale Ein-/Ausgänge an den Busmodul-Klemmen Frontstecker und Kabel	5-1 5-3 5-8
6.	Funktionsbeschreibung	
6.1. 6.2	Einführung Blockdiagramm, Funktionsweise	6-1 6-3
	 6.2.1 Übersicht 6.2.2 H4-Programmspeicher 6.2.3 Parameter 6.2.4 Ausführungsmodus (Immediate/Program) 6.2.5 Ausführungs-Buffer 6.2.6 Achsenstatusflag 6.2.7 Messwertbuffer 	6-3 6-4 6-5 6-5 6-6 6-6
6.3 6.4 6.5	Funktionsübersicht Unterschiede der Module H3 und H4 Generator für das Geschwindigkeitsprofil	6-7 6-8 6-9
	6.5.1 Trapez Geschwindigkeitsprofil6.5.2 S-Kurven Geschwindigkeitsprofil	6-9 6-10

6.6 6.7 6.8 6.9	Blend Hom PID-2 Enco	ded move (Weicher Übergang) e Funktion / Referenzfahren Regler der	6-12 6-15 6-17 6-18
	6.9.1 6.9.2 6.9.3	Encodertyp Drehrichtung Auflösung / Einheiten	6-18 6-18 6-19
6.10 6.11 6.12 6.13 6.14 6.15 7 .	Umk Elekt Funk Funk "Cha Besc	ehrspiel / Backlash tronisches Getriebe tion "Trigger-Out"-Signal tion "Position Capture Input"-Signal nge on-the-fly"- Funktion hreibung von zirkularen periodischen Achsen	6-20 6-21 6-22 6-23 6-24 6-25
7.1. 7.2. 7.3	Einfü Prog Prog	ihrung rammierkonzept rammierung mit CP-Tool (Commissioning / Programming tool)	7-1 7-2 7-4
	7.3.1 7.3.2 7.3.3	Installation Menü-Übersicht Menü Erläuterung	7-4 7-5 7-7
7.4	Prog	rammierung mit FBs	7-13
	7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.4.6	Einführung Adressierung des H4-Moduls Vorsteuern der Statusflags Software Bibliothek mit Funktionsbausteinen Dateien assemblieren und linken Beschreibung der FB	7-13 7-14 7-14 7-15 7-16 7-17
7.5	Befel	hlsliste	7-23
	7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 7.5.9 7.5.10	Syntaxerklärung der Befehlsliste Übersicht Befehlsgruppen Alphabetische Befehls- und Parameterliste Bewegungsbefehle / Motion commands Achsensteuerbefehle / Axis control commands Spezialbefehle / Special commands Parameterbefehle / Parameter commands Programmsteuerbefehle / Program control com. Programmstruktur Befehle / Program structure c. Programm List-Funktionen für Terminal December 2010	7-23 7-24 7-25 7-27 7-31 7-37 7-38 7-40 7-42 7-44

Inhalt

~		
S	eite	
ν	$c_{1}c_{1}$	1

7.6	Parameterliste	7-47
	 7.6.1 Modul Parameter (generell) 7.6.2 Maschinen Parameter 7.6.3 Jog und Referenzfahren 7.6.4 Regel Parameter 7.6.5 Beschleunigung Parameter 7.6.6 Achsmode Parameter 7.6.7 Spezielle Parameter 	7-47 7-48 7-49 7-50 7-51 7-52 7-53
7.7	H4-Programme mit FBs schreiben und lesen	7-54
8.	Fehler-Behandlung	
8.1 8.2 8.3	Installation Checkliste zur Fehlersuche Fehlerbehandlung mit FB	8-1 8-2 8-4
9.	Anwendungsbeispiele	
9.1	Verfahren eines einfachen Weges	9-1
	9.1.1 Beispiel9.1.2 Variante mit CP-Tool9.1.3 Variante mit PCD Programm	9-1 9-2 9-3
9.2 9.3 9.4	Anwendungsbeispiel mit Kreisinterpolation Anwendungsbeispiel Drehautomat Anwendungsbeispiel mit unabhängigen Achsen	9-5 9-8 9-14
	Anhang A: Kommandocode-Definitionen für die Programmierung mit FBs	A-1
	Anhang B: Programmbeispiele mit FBs	B-1
	Beispiel 1 Beispiel 2 Beispiel 3 Beispiel 4 Beispiel 5 Beispiel 6	B-1 B-7 B-11 B-17 B-21 B-27

Inhalt

Notizen

Wichtiger Hinweis:

Um den einwandfreien Betrieb von SAIA[®] PCD sicherstellen zu können, wurde eine Vielzahl detaillierter Handbücher geschaffen. Diese wenden sich an technisch qualifiziertes Personal, das nach Möglichkeit auch unsere Workshops erfolgreich absolviert hat.

Die vielfältigen Leistungen der SAIA[®] PCD treten nur dann optimal in Erscheinung, wenn alle in diesen Handbüchern aufgeführten Angaben und Richtlinien bezüglich Montage, Verkabelung, Programmierung und Inbetriebnahme genau befolgt werden.

Damit allerdings werden Sie zum grossen Kreis der begeisterten SAIA[®] PCD Anwendern gehören.

Übersicht

Zuverlässigkeit und Sicherheit elektronischer Steuerungen

Die Firma SAIA-Burgess Electronics AG konzipiert, entwickelt und stellt ihre Produkte mit aller Sorgfalt her:

- Neuster Stand der Technik
- Einhaltung der Normen
- Zertifiziert nach ISO 9001
- Internationale Approbationen: z.B. Germanischer Lloyd, Det Norske Veritas, CE-Zeichen ...
- Auswahl qualitativ hochwertiger Bauelemente
- Kontrollen in verschiedenen Stufen der Fertigung
- In-Circuit-Tests
- Run-in (Wärmelauf bei 85°C während 48h)

Die daraus resultierende hochstehende Qualität zeigt trotz aller Sorgfalt Grenzen. So ist z.B. mit natürlichen Ausfällen von Bauelementen zu rechnen. Für diese gibt die Firma SAIA-Burgess Electronics AG Garantie gemäss den "Allgemeinen Lieferbedingungen".

Der Anlagebauer seinerseits muss auch seinen Teil für das zuverlässige Arbeiten einer Anlage beitragen. So ist er dafür verantwortlich, dass die Steuerung datenkonform eingesetzt wird und keine Überbeanspruchungen, z.B. auf Temperaturbereiche, Überspannungen und Störfelder oder mechanischen Beanspruchungen auftreten.

Darüber hinaus ist der Anlagebauer auch dafür verantwortlich, dass ein fehlerhaftes Produkt in keinem Fall zu Verletzungen oder gar zum Tod von Personen bzw. zur Beschädigung oder Zerstörung von Sachen führen kann. Die einschlägigen Sicherheitsvorschriften sind in jedem Fall einzuhalten. Gefährliche Fehler müssen durch zusätzliche Massnahmen erkannt und hinsichtlich ihrer Auswirkung blockiert werden. So sind z.B. für die Sicherheit wichtige Ausgänge auf Eingänge zurückzuführen und softwaremässig zu überwachen. Es sind die Diagnoseelemente der PCD wie Watch-Dog, Ausnahme-Organisations-Blocks (XOB) sowie Testund Diagnose-Befehle konsequent anzuwenden.

Werden alle diese Punkte berücksichtigt, verfügen Sie mit der SAIA[®] PCD über eine moderne und sichere programmierbare Steuerung, die Ihre Anlage über viele Jahre zuverlässig steuern, regeln und überwachen wird.

Einführung

1. Einführung

Blockschema eines Servoantriebes für 2 Achsen

Funktion und Anwendung

Das ..H4..-Modul ist das leistungsfähigste der Achssteuermodule zur SAIA[®] PCD4. Durch den Einsatz modernster DSP-Technologie (Digital Signal Processor) ist das ..H4..-Modul in der Lage, 2 bzw. 4 Servomotor-Achsen unabhängig, linearinterpoliert oder zirkularinterpoliert zu regeln. Das S-förmige Geschwindigkeitsprofil ergibt dabei schnelle und zugleich weiche Bewegungsabläufe.

Durch den eigenen Speicher und die hohe Eigenintelligenz kann, je nach Einsatzart des ..H4..-Moduls, die CPU der PCD4 fast vollständig entlastet werden, so dass diese ganz für die eigentliche Prozess-Steuerung frei bleibt. Praxisgerechte Funktionsbausteine und ein leistungsfähiges Softwarepaket machen die Programmierung und Inbetriebnahme äusserst einfach. Sinnvolle Test- und Diagnose-Informationen mit entsprechenden Help-Funktionen unterstützen den Einsteiger und machen die Abläufe transparent. Geschwindigkeits-/Weg-Profil mit S-förmigem Verlauf und Anfahren der Zielposition mit Langsamvorschub

Die wichtigsten Eigenschaften

- PID-geregelte Steuerung von 2 bis 4 Achsen, unabhängig voneinander oder mit Linearinterpolation
- Zirkularinterpolation von 2 beliebigen Achsen des gleichen Moduls
- Weiche Bewegungsabläufe dank wählbarem Geschwindigkeitsprofil mit trapez- oder S-förmigem Verlauf
- Hohe Rechengeschwindigkeit (40 MIPS)
- Dank autonomer Achsfunktionen des .. H4..Moduls wird die CPU der Steuerung kaum belastet, steht also ganz für die Prozess-Steuerung zur Verfügung.
- Die Bewegungsparameter können in einem EEPROM nullspannungssicher gespeichert werden
- Als Incremental-Encoder lassen sich Ausführungen für 5V oder 24V einsetzen.
- Hardware- oder Software-Endschalter werden vom Modul selbständig überwacht und verarbeitet
- Als Ausgang zur Leistungselektronik steht pro Achse ein analoger Ausgang ±10V mit 16 Bit-Auflösung zur Verfügung
- Einfache Programmierung dank leistungsfähiger Befehle und praxisgerechter Software-Bibliothek mit Funktionsbausteinen
- Komfortables Programmier- und Inbetriebnahme-Werkzeug, mit welchem alle Bewegungsabläufe überwacht und geändert sowie individuelle Programme direkt in das ..H4..-Modul geladen und anschliessend gefahren werden können

Linear- und zirkular-interpolierter Verfahrweg von 2 Achsen

Typische Einsatzgebiete

- Palettierautomaten
- Bestückungs- und Montageautomaten
- Verpackungsmaschinen
- NC-gesteuerte Schneidemaschinen
- Maschinen für Dichtungs- und Klebstoffauftrag
- Rohrbiegemaschinen
- Werkzeugwechsler
- Lagerhandling
- Handlingroboter
- Poliermaschinen und anderes mehr

Ausdruck aus dem aktuellen CP (Commissioning and Programming Tool)

Programmier- und Inbetriebnahme-Werkzeug (CP)

Mit diesem Softwarepaket hat der Anwender Zugriff auf alle Funktionen des leistungsfähigen ...H4..-Moduls, d.h. Erstellen und Testen von Verfahrprogrammen sowie Optimieren der Regelparameter. Als menügeführte Programme stehen zur Verfügung:

- **Configure:** Eingabe der Kommunikations- und Achsparameter
- **Motion:** Syntax-geführter Editor zur Erstellung und Inbetriebnahme der Verfahrprogramme
- **Grafics:** grafische Wiedergabe eines Bewegungsablaufes (siehe obenstehende Abbildung), welche die Überprüfung und Optimierung der Regelungsparameter erlaubt
- Utility: Laden und Sichern von Programmen und Parametern

Notizen

2. Technische Daten

2.1 PCD4.H4xx

Wegerfassung (inkremental, 2 um 90° versetzte Impulse A und B sowie Referenzmarke R)

<u>5V Eingänge</u>	5V differenzielle RS422-Eingänge
Potentialtrennung	nein
Signalfrequenz	max. 150 kHz (intern 600 kHz mit x4-Mode)
24V Eingänge	L (Low) = 0 4V
Signalbereiche	H (High) = 19 32V
Eingangsstrom	10 mA
Potentialtrennung	nein
Signalfrequenz	max. 100 kHz (intern 400 kHz mit x4-Mode)
Arbeitsmodus	Quellbetrieb
Digitale Eingänge	
Gemeinsam für alle	- Stop
Achsen	- Start
Pro Achse	 Endschalter LS1 Können auch durch Software- Endschalter LS2 Endschalter ersetzt werden. Referenzschalter Positionserfassung Fehler im Leistungsverstärker
Signalpegel	Low = 0 4V, High = 19 32V
Eingangsstrom	10 mA
Eingangsfilter	30 µs
Potentialtrennung	nein
Arbeitsmodus	Quellbetrieb

Digitale Ausgänge

Gemeinsam für alle Achsen	- H4 ready	
Pro Achse	 Positions-Trigger-Ausgang Leistungsverstärker enable/disable 	
Potentialtrennung Kurzschlussfest Ausgangsstrom Arbeitsmodus	nein nein 1 100 mA (min. Last = 240Ω an $24V$) Quellbetrieb	
Regler-Ausgang (zur A	Ansteuerung des Leistungsverstärkers)	
Pro Achse	$\pm 10V$, kurzschlussfest, Auflösung 15 Bit plus Vorzeichen, Lastwiderstand $\geq 3 \text{ k}\Omega$ Offset max. $\pm 100 \text{ mV}$	
Programmier- und Inbetriebnahme-Werkzeug (PC mit MS-DOS)		
Anschluss	RS 232 (mit Standard-Kabel PCD8.K110/111)	
Bewegungsparameter (können wahlweise in mm, Inch, Winkelgrad oder Encoder-Impulsen eingegeben werden)		

Position	-2 147 483 648 bis +2 147 483 647 Einheiten Bereich: -2^{31} + $(2^{31}-1)$ Impulse
Geschwindigkeit	-16 384 bis +16 383 Einheiten/Servo-Zyklus Bereich: -2^{14} + $(2^{14}-1)$ Impulse (limitriert durch das Eingangsfilter auf 100 kHz rsp. 150 kHz).
Beschleunigung	-16 384 bis +16 383 Einheiten/Servo-Zyklus Bereich: -2^{14} + $(2^{14}-1)$ Impulse
Dauer der S-Form	0.01 bis 99.99s
PID-Regler	P-, I- und D-Faktoren programmierbar Abtastzeit 200 µs bei 2 Achsen, 400 µs bei 4 Achsen
Elektronisches Getriebe	für Übersetzungsverhältnisse 0.0001 bis 10'000

Programmierung	mit Funktions-Blocks (FB) welche als PCD- Quellcode abgeben werden oder mit dem "Pro- gramming/Commissioning"-Tool.
Speicher (auf demH4	 4Modul) nullspannungssicheres EEPROM für alle Bewegungsparameter von 4 Achsen mit Super-Cap gepuffertes RAM ca. 3000 4000 Programmzeilen unterteilbar in 9_Einzelprogramme mit max. 1000 Zeilen pro Programm.
Stromversorgung	
Extern durch Anwender	24 VDC (19 32VDC) geglättet, Restwelligkeit max. 10%, max. 0.2A plus Encoder-Speisung
Für 5V Encoder	I _{max} = 300 mA/Achse

Für 24V Encoder	I _{max} = 200 mA/Achse

Intern vom	
PCD4-Bus +5V	typ. 550 mA + 100 mA pro Achse

Betriebsbedingungen

Umgebungs- Temperatur	Betrieb: 0 +55 °C ohne Zwangsbelüftung Lagerung: -20°C +85 °C Feuchte: 5 95%
EMV	gemäss CE-Empfehlungen: Immunität gemäss EN 50 082-2, 1995 Emissionen gemäss EN 50 081-2, 1993
Mechanische Festigkeit	gemäss IEC 1131-2
Störfestigkeit	1 kV in kapazitiver Kopplung gemäss IEC 801-4

2.2 PCD4 Konfigurierung

CPU	Jede PCD4 CPU ist einsetzbar
Speisung	PCD4.N210 muss wegen den ±15 VDC, welche vom H4-Modul benötigt werden, eingesetzt werden.
	Die 5V Stromaufnahme der H4-Module begrenzt die Anzahl Module auf 4 Module H120 oder 3 Module H440.
Speicher	PCD7.R1 genügt, wenn keine Daten in den DB der CPU abgelegt werden.
	PCD7.R3 in allen andern Fällen (siehe Abschnitt 7.7)

3. Präsentation

3.1 Frontplatte und LEDs

Group	LED		Bedeutung
Digitale Eingänge	LS1	ein	Negativer Endschalter erreicht
		aus	Negativer Endschalter nicht erreicht
	LS2	ein	Positiver Endschalter erreicht
		aus	Positiver Endschalter nicht erreicht
	Ref	ein	Referenz-Schalter erreicht
		aus	Referenz-Schalter nicht erreicht
			Diese Eingänge sind im "L"-Status aktiv.
			Es werden hier aus Sicherheitsgründen Pubekontakta (normally closed) singe
			setzt.
Amplifier	Out	ein	Der digitale Ausgang "Amplifier enable"
(Verstärker)			wurde durch das H4 = H gesetzt. (Betehl "Enable")
			Lindole)
	In	ein	Der digitale Eingang "Amplifier OK"
		•	wurde durch den Verstärker = H geseetzt.
			(als Anwort auf "Enable")

3.2 Gedruckte Leiterplatte

Hauptprint, Master

Ausgangsstecker ± 10V, Y-Achse Ausgangsstecker ± 10V, X-Achse PGU-Stecker

Zähler/Encoder Karte

4. Blockschaltbild

Blockschaltbild eines Servoantriebs für 4 Achsen

Notizen

5. Anschlüsse

5.1 Klemmenanschlüsse des Bus-Moduls (Übersicht)

MASTER

X-Achse (Master)

 $(LS \rightarrow Limit Switch = Endschalter)$

Anschluss	Beschreibung	Тур
0	Verstärker aktiv/inaktiv	Ausgang
1	Trigger-Ausgang	Ausgang
2	Verstärker ok / Fehlersignal	Eingang
3	LS1: Endschalter 1 (neg.)	Eingang
4	LS2: Endschalter 2 (pos.)	Eingang
5	Ref: Referenzpunkt-Schalter	Eingang
А	Positionserfassung	Eingang

Y-Achse (Master)

Anschluss	Beschreibung	Тур
8	Verstärker aktiv/inaktiv	Ausgang
9	Trigger-Ausgang	Ausgang
10	Verstärker ok / Fehlersignal	Eingang
11	LS1: Endschalter 1 (neg.)	Eingang
12	LS2: Endschalter 2 (pos.)	Eingang
13	Ref: Referenzpunkt-Schalter	Eingang
В	Positionserfassung	Eingang

Gemeinsame Anschlüsse (Master)

Anschluss	Beschreibung	Тур
6	H4 Bereit	Ausgang
7	Stop Programm	Eingang
14		
15	Start Programm	Eingang
-	GND	
+	+24 V	

Erweiterung

Z-Achse (Erweiterung)

 $(LS \rightarrow Limit Switch = Endschalter)$

Anschluss	Beschreibung	Тур
0	Verstärker aktiv/inaktiv	Ausgang
1	Trigger-Ausgang	Ausgang
2	Verstärker ok Fehlersignal	Eingang
3	LS1: Endschalter 1 (neg.)	Eingang
4	LS2: Endschalter 2 (pos.)	Eingang
5	Ref: Referenzpunkt-Schalter	Eingang
A	Positionserfassung	Eingang

W-Achse (Erweiterung)

Anschluss	Beschreibung	Тур
8	Verstärker aktiv/inaktiv	Ausgang
9	Trigger-Ausgang	Ausgang
10	Verstärker ok / Fehlersignal	Eingang
11	LS1: Endschalter 1 (neg.)	Eingang
12	LS2: Endschalter 2 (pos.)	Eingang
13	Ref: Referenzpunkt-Schalter	Eingang
В	Positionserfassung	Eingang

Gemeinsame Anschlüsse (Erweiterung)

Anschluss	Beschreibung	Тур
6	nicht verwendet	
7	nicht verwendet	
14	nicht verwendet	
15	nicht verwendet	
_	GND	
+	+24 V	

5.2. Digitale Ein-/Ausgänge an den Busmodul-Klemmen

Master

Anschluss	Beschreibung	Тур
0	Verstärker aktiv/inaktiv, X-Achse	Ausgang
8	Verstärker aktiv/inaktiv, Y-Achse	Ausgang

Erweiterung

Anschluss	Beschreibung	Тур
0	Verstärker aktiv/inaktiv, Z-Achse	Ausgang
8	Verstärker aktiv/inaktiv, W-Achse	Ausgang

Die meisten Verstärker verfügen über einen Aktiv-Inaktiv-Eingang (Enable), welcher das Abschalten des Verstärkers, unabhängig von der Grösse des Steuersignals ermöglicht.

Diese Steuerfunktion ist sicherheitstechnisch sehr wichtig, damit der Vertärker im Bedarfsfall ganz herungergefahren werden kann (dies in einem Fehlerfall oder auch zum Steueren der Einschaltsequenz des Systems). Ein Stopsignal sollte niemals von einem analogen Ausgang, welcher Null Volt ist, abgenommen werden, da sich hier ein Offset aufbauen kann, was dann nicht zu einem Stop führt.

Der Ausgang ist aktiv, wenn dieser = H ist.

Master

Anschluss	Beschreibung	Тур
2	Verstärker ok / Fehlersignal, X-Achse	Eingang
10	Verstärker ok / Fehlersignal, Y-Achse	Eingang

Erweiterung

Anschluss	Beschreibung	Тур
2	Verstärker ok / Fehlersignal, Z-Achse	Eingang
10	Verstärker ok / Fehlersignal, W-Achse	Eingang

An diesen Eingang wird das Verstärker-OK-Signal geführt, so dass im Störungsfall alle Bewegungen und Programme gestoppt und einer oder alle Verstärker ausgeschaltet werden.

Der Eingang ist aktiv, wenn dieser = H ist.

Master	ster $(LS \rightarrow Limit Switch = Endschal$	
Anschluss	Beschreibung	Тур
3	LS1: Endschalter neg. X-Achse	Eingang
11	LS1: Endschalter neg. Y-Achse	Eingang

Erweiterung

Anschluss	Beschreibung	Тур
3	LS1: Endschalter neg. Z-Achse	Eingang
11	LS1: Endschalter neg. W-Achse	Eingang

An diesen Eingang wird der Endschalter 1 für die negative Wegbegrenzung angeschlossen.

Diese Eingänge sind im "L"-Status aktiv, d.h. im Normalfall (Achse nicht auf Endschalter) müssen +24V anliegen.

Diese Schaltung verlangt einen Ruhekontakt (normally closed) als Endschalter.

Master

 $(LS \rightarrow Limit Switch = Endschalter)$

Anschluss	Beschreibung	Тур
4	LS2: Endschalter pos. X-Achse	INPUT
12	LS2: Endschalter pos. Y-Achse	INPUT

Erweiterung

Anschluss	Beschreibung	Тур
4	LS2: Endschalter pos. Z-Achse	INPUT
12	LS2: Endschalter pos. W-Achse	INPUT

An diesen Eingang wird der Endschalter2 für die positive Wegbegrenzung bei der Endposition angeschlossen.

Diese Eingänge sind im "L"-Status aktiv, d.h. im Normalfall (Achse nicht auf Endschalter) müssen +24V anliegen.

Diese Schaltung verlangt einen Ruhekontakt (normally closed) als Endschalter.

Master

Anschluss	Beschreibung	Тур
5	Ref: Referenzpunkt-Schalter, X-Achse	Eingang
13	Ref: Referenzpunkt-Schalter, Y-Achse	Eingang

Erweiterung

Anschluss	Beschreibung	Тур
5	Ref: Referenzpunkt-Schalter, Z-Achse	Eingang
13	Ref: Referenzpunkt-Schalter, W-Achse	Eingang

Dieser Eingang wird in der Routine zum Anfahren des Referenzpunktes verwendet (homing routine).

Diese Schaltung verlangt einen Ruhekontakt (normally closed) als Referenzschalter.

Master

Anschluss	Beschreibung	Тур
6	H4Ready-Ausgang (Bereit-Ausgang)	Ausgang

Dieser Ausgang ist = H, wenn das System zum Arbeiten bereit ist und kein abnormaler Zustand (z.B. Endschalter aktiv) vorliegt.

Der Ausgang wird = L, wenn die OK-LED blinkt oder ganz ausgeschaltet ist.

Master

Anschluss	Beschreibung	Тур
15	Start-Eingang	Eingang

Mit diesem Eingang wird der Start des mit P95 gewählten Programms ausgelöst (wie Befehl 'Start').

Die Polarität dieses Eingangs ist programmierbar (P90).

Master

Anschluss	Beschreibung	Тур
7	Stop-Eingang	Eingang

Mit diesem Eingang wird der Programmablauf des mit P95 gewählten Programms bei der nächsten Warte-Instruktion angehalten (wie Befehl 'Break').

Die Polarität dieses Eingangs ist programmierbar (P91).

Master

Anschluss	Beschreibung	Тур
1	Trigger-Ausgang, X-Achse	Ausgang
9	Trigger-Ausgang, Y-Achse	Ausgang

Erweiterung

Anschluss	Beschreibung	Тур
1	Trigger-Ausgang, Z-Achse	Ausgang
9	Trigger-Ausgang, W-Achse	Ausgang

Der Triggerausgang liefert, wenn softwaremässig aktiviert, eine Signalflanke, wenn eine Achse eine vorgegebene Position erreicht.

Mit dieser Funktion kann eine externe Aktion, abhängig von einer Achsposition, praktisch verzögerungsfrei ausgelöst werden.

Die Polarität dieses Ausgangs ist programmierbar (P'x'62).

Master

Anschluss	Beschreibung	Тур
А	Positionserfassung, X-Achse	Eingang
В	Positionserfassung, Y-Achse	Eingang

Erweiterung

Anschluss	Beschreibung	Тур
А	Positionserfassung, Z-Achse	Eingang
В	Positionserfassung, W-Achse	Eingang

Mit diesem Signal kann, wenn softwaremässig aktiviert, die aktuelle Position der Achsen in Echtzeit-Werten für spätere Auswertungen gespeichert werden.

Der aktive Status dieses Eingangs ist = H.

5.3. Frontstecker und Kabel

Verbindungs-Diagramm für das 24V Encoder-Anschlusskabel

Verbindungs-Diagramm für das 5V/RS 422 Encoder-Anschlusskabel

Verbindungs-Diagramm für das Analog-Ausgangs Kabel (±10 V)

Programmier-Schnittstelle (PROG)

mit Standard-Kabel PCD8.K110/111

(Anschlussbelegungen siehe PCD4-Handbuch)

Notizen

6. Funktionsbeschreibung

6.1 Einführung

Das Modul

Das PCD4.H4.. "Motion Control"-Modul steuert 1 bis 4 Achsen und kann diese linear und zirkular interpolieren.

Das Modul wird auf den PCD4-Bus aufgesteckt. Das Modul belegt 16 Adressen des PCD4-Bus für den Datenaustausch mit der PCD4-Anwender-Software. Die 5V Stromaufnahme limitiert die Anzahl H4-Module. Es könnten theoretisch bis zu 8 Module (32 Achsen) gesteckt werden und jedes Modul kann seine Achsen interpolieren (siehe Abschnitt 2.2, Speisung). Eine modulübergreifende Interpolation ist nicht möglich, jedoch können mit einem H4-Modul 4 Achsen für eigenständige Bewegungen unabhängig voneinander oder 4 Achsen für eine Bewegung (interpoliert) gesteuert und überwacht werden. Kombinationen dazwischen sind selbstverständlich auch möglich.

Selbständigkeit

Das Modul arbeitet selbständig. Das Modul regelt die Achsen, verfährt diese bahngenau, kommuniziert mit dem CP-Tool (Commissioning and Programming Tool) und/oder mit der PCD-CPU via den SAIA[®] Standard-Funktionsblöcken und verfügt über einen eigenen Programmspeicher.

Integriert in PCD

Je nach Komplexität der Anwendung (z.B. variable prozessabhängige Daten wie Geschwindigkeit, Position usw.) muss eine PCD-CPU zur Steuerung der H4-Module herangezogen werden.

Benutzerfreundlich

Die Programmierung und Parametrierung ist mit dem CP-Tool am PC Bildschirm möglich aber auch via den FBs von der PCD4-CPU aus. Dies gibt dem Anwender die volle Freiheit, alle Möglichkeiten für sein Projekt auszuschöpfen.

Bild 6.01

Dieses Bild zeigt, dass jedes Modul (PCD, H4-Modul, CP-Tool) selbständig arbeitet und die andern nicht wesentlich belastet.
6.2 Blockdiagramm, Funktionsweise

6.2.1 Übersicht

Das Hardware-Blockschaltbild kann in Kapitel 4 eingesehen werden. Hier wird das H4-Modul in seinen Ressourcen und Funktionen dargestellt. So ist zum Beispiel ersichtlich, dass es einen Parameterbereich (Block) gibt. Alle Funktionen oder Befehle (mit Pfeilen gekennzeichnet) wirken immer auf den entsprechenden Block.

Anhand obiger Darstellung ist ersichtlich, dass die Befehle ans H4-Modul in verschiedene Gruppen aufgeteilt werden können. Es spielt dabei keine Rolle, ob diese Befehle von der PCD-CPU (via FBs) oder vom PC (CP.EXE) stammen.

6.2.2 H4-Programmspeicher

Das H4-Modul besitzt einen eigenen Speicher für Anwender-Programme. In diesem Speicher können Befehle aus dem Befehlsvorrat des H4-Moduls abgelegt werden. Ein Programm kann im CP-Tool geschrieben und anschliessend ins H4-Modul transferiert werden. Dies ist ebenso von der PCD4-CPU aus mit den FBs möglich.

Programme

Die Programme werden beim Laden ins H4-Modul einer Nummer zugeordnet. Es stehen 9 Programme zur Verfügung. Es können maximal 4 Programme gleichzeitig laufen.

Programmzeilen

Es können max. 1000 Programmzeilen pro Programm im H4-Modul gespeichert werden. Insgesamt können, je nach verwendeten Befehlen, ca. 3000 - 4000 Programmzeilen im H4-Modul gespeichert werden.

Speicherung

Die Programme im H4-Modul sind gegen Verlust bei Spannungsausfall mit einem Supercap gesichert und werden mindestens 2 Wochen gehalten. Die Parameter sind im EEPROM gesichert und gehen nicht verloren.

6.2.3 Parameter

Etwa 80 Parameter sind im H4-Modul hinterlegt. Diese werden beim Einschalten vom EEPROM in den 'Parameterblock' kopiert mit welchem das H4-Betriebssystem arbeitet. Die Parameter sind in Funktionsgruppen gegliedert und in der Parameterliste, Abschnitt 7.6, zusammengefasst.

Änderungen / EEPROM

Änderungen der Parameter sind bei Spannungsausfall flüchtig. Um dennoch die Einstellungen für eine bestimmte Applikation im H4-Modul zu speichern, können die Parameter ins EEPROM kopiert werden. Dies geschieht mit dem CP-Tool automatisch beim Schreiben der Parameter ins H4-Modul aus dem Parametermenü.. Beim Arbeiten mit den FBs muss das Speichern der Parameter bewusst mit einem speziellen Befehl ausgeführt werden. Die maximale Anzahl Schreibzyklen ist auf 100'000 begrenzt. Aus diesem Grund darf das Abspeichern nicht in einem zyklischen Programmablauf erfolgen.

6.2.4 Ausführungsmodus (Immediate / Program)

FBs:

In Bild 6.02 ist ersichtlich, dass es zwei Typen von Bewegungs-Befehlen gibt. Die Bewegungsbefehle 'Immediate' werden direkt den Ausführungsbuffern übermittelt und fortlaufend ausgeführt. Die Bewegungsbefehle 'Program' werden nicht direkt ausgeführt, sondern in ein H4-Programm (Nr. 1 - 9) geschrieben. In der Befehlsliste (Abschnitt 7.5) ist in der Spalte 'ip-Parameter' angegeben, welcher Befehl in welchem Ausführungsmodus arbeitet. (I nur Immediate, P nur Program, IP Immediate + Program)

CP-Tool: (**CP** = **Commissioning** / **Programming**)

Grundsätzlich bestehen die beiden Ausführungsmodi (Immediate / Program) bei Verwendung des CP-Tools auch. Der Anwender wird jedoch nur indirekt damit konfrontiert. Verwendet und arbeitet man im CP-Tool im Menü 'Motion/Program Edit', in welchem Programme erstellt und anschliessend ins H4-Modul geladen werden, so werden nur die Befehle 'Motion Prog. Cmd' akzeptiert. Im Fenster 'Motion/ Terminal' werden hingegen die Befehle 'Motion immediate' benutzt.

6.2.5 Ausführungs-Buffer

Das H4-Modul ist eigenständig und kann somit Programme bis zum Schluss ohne weitere Unterstützung ausführen. Vom CP-Tool aus oder mit den FBs der PCD-CPU muss anschliessend nur der Programmfluss gesteuert werden (z.B. Run 5).

Für diesen eigenständigen Ausführungsprozess der Programme oder auch für das Ausführen der 'Motion Immediate'-Befehle verfügt das H4 über vier interne Ausführungs-Buffer. Dieser Ausführungs-Buffer oder Ausführungs-Prozess kann nicht umgangen werden. Mit 'Immediate'-Befehlen wird nur ein Ausführungs-Buffer verwaltet.

Der Ausführungs-Buffer kann 50 'Immediate'-Befehle speichern. Wird diese Anzahl überschritten, wird das 'User Error Bit' und das Störungs-Bit 9 gesetzt. Diese Fehlermeldung wird zurückgesetzt, wenn die Anzahl Befehle im Buffer auf 45 sinkt.

Buffer Überfüllung: Werden trotz der Fehlermeldung 'Buffer full' (Bit 9) weitere Immediate-Befehle ans H4 geschickt, gehen diese verloren.

Der Ausführungsbuffer wird sequentiell abgearbeitet, d.h. ein neuer Befehl wird erst ausgeführt, wenn der vorangehende beendet ist.

Wenn mehrere Achsen gleichzeitig (nicht interpoliert) bewegt werden sollen, muss mit verschiedenen Programmen (1 Programm/Achse) gearbeitet werden, welche parallel gestartet werden können.

Jedes Programm benutzt einen Ausführungsbuffer, d.h. max. 4 Programme oder 3 Programme und Immediate-Befehle können gleichzeitig ausgeführt werden.

6.2.6 Achsenstatusflag

In Bild 6.02 ist ersichtlich, dass jede Achse sogenannte Achsenstatusflag beinhaltet. Anhand dieser kann z. B. festgestellt werden, ob eine Achse einen Endlagen-Schalter erreicht hat, die Lageregelung aktiv ist oder z.B. auch ob der Home-Prozess beendet ist. Diese Achsenstatusflag werden mit dem Befehl 'Query status x' abgefragt. Die einzelnen Flags und deren Bedeutung entnehmen Sie bitte der Befehlsliste (Abschnitt 7.5).

Die Statusflags sind in Gruppen aufgeteilt. Die Flags 0-7 werden durch die Standard-FBs belegt und dürfen vom Anwender nicht benutzt werden. Die Flags 8-23 sind für die X-Achse reserviert, 24-39 für Y, 40-55 für Z und 56-71 für die Achse W. Für die Programmierung steht es dem Anwender frei, ob er mit Nummern arbeiten oder ob er dem jeweiligen Flag ein Symbol zuteilen will. Zu allen Flags wird die Basisadresse der Flags (BAF) addiert, welche im Initialisierungs-FB definiert wurde. (siehe Abschnitt 7.4.6).

Flag	 0-6: Die Flag 0-6 werden durch die Standard-FBs belegt und dürfen vom Anwender nicht benutzt werden. 7: Fatal Error (siehe Kapitel 8). 				
	X	Y	Z	W:	Achse
Flag	8	24	40	56:	Achse in Position
0	9	25	41	57:	Achse läuft in 'immediate'-Mode
	10	26	42	58:	Achse in Hardware LS
	11	27	43	59:	Achse in Software LS
	12	28	44	60:	Störung Schleppfehler
	13	29	45	61:	Warnung Schleppfehler
	14	30	46	62:	Soll-Geschwindigkeit der Achse $= 0$
	15	31	47	63:	Capture-Position erfasst
	16	32	48	64:	Drive OK (Status Input AOK)
	17	33	49	65:	Negativ LS Input angesprochen (LSS)
	18	34	50	66:	Positiv LS Input angesprochen (LSE)
	19	35	51	67:	Referenz Switch angesprochen (RPS)
	20	36	52	68:	'Position Capture Input' angesprochen (PCI)
	21	37	53	69:	Trigger-Position erreicht

23 39 55 71: Homefunktion erfolgreich beendet

22

38

54

70:

6.2.7 Messwertbuffer (siehe Bild auf Seite 1-3 und Bild 6-02)

Der Messwertbuffer kann nur vom CP-Tool im Graphic-Menü ausgelesen werden. Der Messwertbuffer dient der Speicherung der vorgängig vom Anwender gewählten Bewegungs-Daten. Diese können grafisch visualisiert werden (Oszilloskop-Funktion) und dienen der Einstellung der Achsregelparameter an Maschinen. Das Bedienen und Einsetzen dieser Funktion ist im Abschnitt 7.3, CP-Tool, beschrieben.

Positionsüberlauf

6.3 Funktionsübersicht

Funktionen:

Positionieren einer linearen Achse	Ja
Positionieren einer Dreh-Achse	Ja
Linearinterpolation bis zu 4 Achsen	Ja
Kreisinterpolation	Ja
Spline-Interpolation	Nein
Lageregelung (Positioniermode)	Ja
Drehzahlregelung	Nein
Elektronik-Getriebe (von zwei und mehr Achsen)	Ja
Blended moves	Ja
S-Kurven Beschleunigungsprofil	Ja
Feedforward für Geschwindigkeit und Beschleunigung	Ja
Justieren der Achsenregelparameter	Ja mit Soft-
	ware (CP-
	Tool)
Speichern des Bewegungsprog. des H4-Moduls ausser-	Ja auf PC
halb des Moduls	oder SPS
Spindelsteigung Fehlerkompensation	Nein
Kompensation des Umkehrspiels	Ja
Teach-In	Nein
ISO-Code (CNC)	Nein
Verändern der Parameter im Betrieb	Ja (siehe 'on
	the fly')
M-Befehle wie in CNC	Nein
Jog: Manual-Betrieb	Ja

Die mit 'Nein' bezeichneten Funktionen können grossteils mit der CPU gelöst werden.

Einsatzbeispiele: (siehe auch Kapitel 1)

Electronic cam programmer (el. Nockenschaltwerk)	Nein
Flying cut possibilities (Fliegende-Schere)	Nein
Kartesischer Roboter	Ja
Handling-Gerät	Ja
Spezial-Maschinen	Ja

6.4 Unterschiede der Module H3 und H4

Unterschiede	PCD4.H3xx	PCD4.H4xx
Betriebsmodi	Positions- und Geschwindig-	Nur Positionsmodus
	keitsmodus	
Programm Editor für IL-	Jeder ASCII Editor, ohne	Jeder ASCII Editor, auch SEDIT mög-
Instruktionen	SEDIT (Symbol Offset nicht	lich.
	möglich).	
Bewegungs- Programm	Kann im Modul nicht gespeichert	Bis zu 9 verschiedene Programme kön-
	werden. Alle Daten und Infor-	nen im RAM des Moduls gespeichert
	mationen der Achse sind in der	werden. Die PCD-CPU wird somit
	PCD-CPU abgelegt.	entlastet.
Parameter	Sind im Modul nicht null-	Sind im Modul in einem EEPROM
	spannungssicher gespeichert.	gespeichert. Daher gehen diese bei
	Das heisst, diese gehen beim	Power down nicht verloren.
	Ausschalten verloren.	
Achs Init und Achs Handling	Jede Achse wird durch zwei FBs	Jede Funktion wird durch Aufruf des
	gesteuert und überwacht. "AxI-	FBs "fbH4.exe" mit einem Befehlswort
	nit" und "AxHndlg".	direkt ausgeführt. Für die Initialisierung
	Eine Funktion wird durch Setzen	und den Modul-Zustand stehen zwei
	eines Flags ausgelöst.	weitere FBs zur Verfügung
Referenz Prozedur	Muss durch den Anwender gelöst	Auf Verlangen vom H4 automatisch
	werden.	durchgeführt
FB Verschachtelungsebene	3 Ebenen	1 Ebene
		(bei Prog. Up/Down laden 2 Ebenen)
Synchronisation zwischen Ach-	Durch das Anwender-Programm	Durch das Modul (Mehrachsen Linear-
sen	in der PCD.	oder Zirkular-Interpolation)
Motion Control Factor :		
- Einheiten	- Encoder Impulse oder mm	- Encoder Impulse, mm, Grad
		oder Inch
- Ubersetzung von Impulsen zu	- durch PCD-CPU	- Durch H4
mm / inch oder umgekehrt		
Commissioning & Progr. Tool :		
- Verbindung	- PGU Stecker auf der PCD-CPU	- Programmier-Stecker auf dem H4
- Programmierung	- nicht möglich	- ganze Bewegungsablaufe konnen
		geschrieben, ausgeführt und auf Dis-
		kette gespeichert werden. Dazu ist
		CDL as traver die
Commissioning	nur sins Ashas kann nusanam	CPU notwendig. Mäglichkeit für direkte Dewegunge
- Commissioning	- nur eine Achse kann program-	- Moglichkeit für direkte Bewegungs-
	Fin minimalas PCD Programm	Austuntung Online Ontimierung der Beremeter mit
	muss in der PCD CPU verhan	- Omne Optimierung der Farameter mit
	don soin	granscher Unterstutzung.
Endechalter und	Muss durch den Benutzer über	Üharmaaht durch das H4 Madul
Referenz Schalter	wacht werden	o bei waent duich das 114 Modul.
A dressen	Die erste Adresse und die Anzehl	Elevibler Die Adresse iedes Moduls
	der Module müssen definiert	muss definiert werden und als Parame
	werden Bei mehreren Modulen	ter den FBs übergeben werden. Dies
	müssen alle beieinander liegen	ermöglicht die freie Plazierung der
	(lückenlos)	Module auf dem PCD4-Rus
I/O für Motion Control Modul	Alle I/Os müssen durch die PCD-	Integriert und kontrolliert im H4
	CPU gesteuert werden.	integriere une koncontert ini II+.

6.5 Generator für das Geschwindigkeitsprofil

Profilgenerator

Mit dem H4-Modul können entweder Trapezförmige oder S- kurvenförmige Geschwindigkeitsprofile generiert werden. Diese können für jede Achse mit P 'x' 42 gewählt und festgelegt werden. Der Generator produziert die spezifizierte Sollkurve für jede Achse. Der Servo-Lageregler regelt nun die effektive Position so gut wie möglich an die Soll-Position.

6.5.1 Trapez Geschwindigkeitsprofil

Dies ist das einfachste Geschwindigkeitsprofil. Die Achse fährt mit einer bestimmten Geschwindigkeit auf ein Ziel, beschleunigt und bremst mit einer konstanten Rampe. Diese Geschwindigkeiten sind in den folgenden Parametern definiert:

maximum acceleration/deceleration rate:	P 'x' 33
acceleration rate:	P 'x' 43
deceleration rate:	P 'x' 44
Geschwindigkeit mit dem Befehl	SS 'x'
Beschleunigungsmodus	P'x'42 = 0 (trapezförmig)

Bei Verwendung einer hohen Geschwindigkeit oder beim Verfahren einer sehr kurzen Strecke ist es möglich, dass die gewünschte Geschwindigkeit nicht erreicht wird. In diesem Fall wird das Geschwindigkeitsprofil dreieckförmig.

6.5.2 S-Kurven Geschwindigkeitsprofil

Ein Trapez-Geschwindigkeitsprofil mit einer konstanten Beschleunigung hat einen harten Wechsel beim Einsetzen der Beschleunigung zur Folge, was die Achse zum Schwingen anregen kann. Für einen weicheren Übergang und zum Überwinden der Haftreibung bei V = 0, wird das S- Kurven-Profil verwendet. Dieses Profil wird durch Ändern der Beschleunigung während dem Beschleunigen erreicht. Die S-Kurvendauer t_s ist einstellbar und in einem Parameter hinterlegt.

Wird die S-Kurve verwendet, so gelten die Parameter 43 und 44 als mittlere Acceleration und Deceleration.

Wird die S-Kurvendauer $t_s = 0$ spezifiziert, ergibt sich ein rein trapezförmiges Geschwindigkeitsprofil. Wird t_s grösser als die Hälfte der (errechneten) Beschleunigungszeit (t_A) spezifiziert, wird ts auf $t_{A/2}$ begrenzt. Innerhalb der Beschleunigung ergibt sich somit kein linearer Anteil. Dies ergibt eine rein S-förmige Beschleunigung mit einem Maximum, welches 2x der mittleren Beschleunigung (P 'x' 43) entspricht. Die maximale Beschleunigung, eingestellt in P 'x' 33, kann somit bei Verwendung einer reinen S-Kurve auch 2x überschritten werden, was sich durch einen grösseren Schleppfehler während dem Beschleunigen auswirken würde.

In der Praxis erweist sich eine S-Kurvendauer von 5 … 30% der Beschleunigungszeit t_a als sinnvoll.

Kombination von zwei Achsen mit unterschiedlichem Rampenprofil

Wird zum Beispiel die X-Achse mit dem trapezförmigen Rampenprofil und die Y-Achse mit der S-Kurve definiert und eine Bahn-Bewegung ausgelöst, so werden beide Achsen mit der S-Kurve beschleunigt.

Ist die Zeit t_s 'Duration time', welche für jede Achse definiert wird unterschiedlich, so wird die grösste Zeit verwendet.

Für interpolierte Bewegungen gelten folgende Befehle:

SV anstelle SS 'x'	(Geschwin	digkeit)
SA anstelle P 'x' 43	(Beschleur	nigung)
SD anstelle P 'x' 44	(Verzögeru	ing)
max. Velocity	P 'x' 30	wird auch
max. Acc./Dec.	P 'x' 33	berücksichtigt

Die Bahngeschwindigkeit SV wird entsprechend der Verfahrwege auf die einzelnen Achsen aufgeteilt.

$\mathbf{SV} = \sqrt{\mathbf{V}_{x}^{2} + \mathbf{V}_{y}^{2}}$	für 2-Achs-Interpolation
$SV = \sqrt{V_x^2 + V_y^2 + V_z^2}$	für 3-Achs-Interpolation
$SV = \sqrt{V_x^2 + V_y^2 + V_z^2 + V_w^2}$	für 4-Achs-Interpolation

Pro Modul existiert nur 1 Bahngeschwindigkeit SV. Beim Ausführen einer interpolierten Bewegung wird immer der aktuelle Wert von SV zur Berechnung verwendet. Danach kann SV verändert werden, ohne dass die laufende Bewegung beeinflusst wird. (nicht 'on the fly'). Damit können bei einem H440 zwei Achsenpaare gleichzeitig mit unterschiedlichen Bahngeschwindigkeiten bewegt werden.

6.6 Blended move (Weicher Übergang)

Dem H4-Modul können ganze Abläufe in Auftrag gegeben werden. Das heisst, mehrere einzelne Bewegungen zusammen ergeben einen Ablauf. Ist eine einzelne Bewegung eines Ablaufs beendet, würden alle beteiligten Achsen die Geschwindigkeit auf Null reduzieren, um anschliessend für die nächste Bewegung erneut zu beschleunigen. Mit der Funktion 'Blended move' wird die neue Geschwindigkeit übernommen und es findet nur eine Änderung von der ersten zur zweiten Geschwindigkeit statt. Diese Änderung beginnt bei der Position wo die Bremsrampe (ohne 'blended move') einsetzen würde. Die Überblendung von einer Geschwindigkeit auf eine neue, wird immer trapezförmig ausgeführt.

Beispiele:

ohne Blended move:	mit Blended move:
XR500,YR0	XR500,YR0
WAITO XR200YR100	XR200YR100
SV100 XR50,YR0 WAIT0 SV120	SV100 XR50,YR0 SV120
XR200,YR100	XR200,YR100
XR500 YR200	XR500,YR0 XR0,YR200

Parameter P97 ''Blended move Winkel''

Ist P97 kleiner als der beim Verfahren der Achsen entstehende Winkel, so wird 'Blended move' angewendet. Dies ist sinnvoll, wenn zum Beispiel mit einem Handlinggerät eine Strecke zurückgelegt werden muss, ohne dazwischen anzuhalten. Sollen jedoch bestimmte Punkte exakt angefahren werden, so kann der Winkel so gesetzt werden, dass kein 'Blended move' angewendet wird. (Mit P97 = 181° wird die Funktion ganz ausgeschaltet). Es ist jedoch zu beachten, dass mit 'Blended move' die Zwischenpositionen nicht ganz erreicht werden, um die Bahngeschwindigkeit konstant zu halten.

Geschwindigkeit bei 'Blended move'

Sind die einzelnen Bewegungsschritte im Vergleich zur gewählten Geschwindigkeit klein ist es möglich, dass diese nicht erreicht wird.

Die Geschwindigkeit bei 'blended move' entspricht derjenigen, welche im Maximum bei einer einzelnen Bewegung erreicht würde und ist abhängig von der Beschleunigung P'x'43 bzw. P'x'44 und dem Weg 's':

Mit Acc. P'x'43 = Desc. P'x'44 = a ergibt sich die folgende max. Geschwindigkeit:

$$V_{BL} = \sqrt{2 \times a \times s}$$

Wenn die gewählte Geschwindigkeit erreicht werden soll, kann:

- die Geschwindigkeit reduziert werden (SSX bzw. SV) oder
- die Beschleunigungen P'x'43 und P'x'44 erhöht werden oder
- die einzelnen Bewegungsschritte vergrössert werden

6.7 Home Funktion / Referenzfahren

Das H4-Modul kann die Referenzfahrt eigenständig ausführen. Diese Funktion ist bereits ein kleiner Programmablauf und muss daher auch definiert werden. Die Definitionen stehen in den Parametern 20-24 und sind im Abschnitt 7.6.3 aufgelistet.

Die zu referenzierende Achse muss aktiv sein (ENABLE). (Die nachfolgende Beschreibung ist auf Bild 6.07 bezogen)

- 1. Die Suche des Referenzschalters wird mit der in Parameter 22 definierten Geschwindigkeit durchgeführt. Im Parameter 20 wird die Suchrichtung definiert. Wird der Referenzschalter nicht gefunden und trifft die Achse auf einen Endschalter (HW oder SW), wird die Suchrichtung geändert.
- 2. Wurde der Referenzschalter gefunden, beginnt das Freifahren. Die Richtung des Freifahrens ist in Parameter 21 definiert, die Geschwindigkeit in P 'x' 24.
- Nachdem der Refernzschalter abgefallen ist, wird die Achse weiter bewegt, bis das Index-Signal des Encoders (Kanal C) detektiert wird. Die Wiederholgenauigkeit des Referenzschalters ist nicht relevant, da auf das C-Signal des Encoders referenziert wird. Die Wiederholgenauigkeit ist somit incrementgenau.
- 4. Beim Erkennen des C-Signals wird die Achse mit dem in Parameter 23 festgelegten Wert geladen (oft '0') und anschliessend abgebremst. Die Achse steht daher nach dem Stoppen nicht genau auf dem Referenzpunkt.

Die Home Funktion ist erfolgreich beendet und das Statusflag wird 'H' gesetzt (siehe Abschnitt 7.5.5).

Hinweise:

- Wird kein Referenzschalter oder kein C-Signal des Encoders gefunden, blinkt die OK-LED und im User-Error Code wird das Störungs-Bit 7 hinterlegt. (siehe Abschnitt 7.5.5, Zelle 2.13). Liefert der Encoder kein C-Signal, muss dieser Eingang auf logisch H verdrahtet werden (siehe Abschnitt 5.3).
- Die Referenzposition P 'x' 23 kann zum Beispiel auch als Abgleichung der Achsen von mehreren gleichen Maschinen dienen.
- Die Home-Funktion wird nicht PID geregelt sondern nur gesteuert ausgeführt. Die Steuerspannung ist:

Bild 6.07

6.8 PID-Regler

Der digitale Lageregler mit 'Geschwindigkeit feedforward' und 'Beschleunigung feedforward' kann in allen seinen Regelgrössen während der Bewegung verändert werden. (Change "on the fly" in Abschnitt 7.6).

Regler-Parameter:

Proportional- Faktor	Parameter 50
Differential- Faktor	Parameter 51
Abtastfaktor für D	Parameter 56
Integral Faktor	Parameter 52
Integrallimit	Parameter 53
Integralmode	Parameter 16
Geschwindigkeit feedforward	Parameter 54
Beschleunigung feedforward	Parameter 55
Dead band	Parameter 10

Trajectory Generator

Bild 6.08

Der Profil-Generator (Trajectory Generator) erzeugt alle digitalen Informationen, um das System zu steuern (Zielposition, Geschwindigkeit, Beschleunigung). Ebenso wird die Funktion 'jerk' erzeugt (Beschleunigungs-Änderung).

6.9 Encoder

Die genaue Position der Achse wird mit einem Incremental-Drehgeber oder Incremental-Massstab erfasst. Die Position wird im 'x4'-Modus ausgewertet. Damit wird die vierfache Auflösung erreicht.

6.9.1. Encodertyp

Die Incremental-Geber können verschiedene Signale aufweisen. Das H4 Modul kann 24 VDC oder 5 VDC-Encoder verarbeiten (Hardwaredetails siehe Kapitel 2 "Technische Daten").

Der Encodertyp kann im Parameter 92 ausgewählt und eingestellt werden. Die Einstellung umfasst jeweils ein Achsenpaar X und Y oder Z und W. Da die LEDs A, B und C nach der Encoderwahl angesteuert werden, kann mit diesen die korrekte Einstellung überprüft werden.

6.9.2. Drehrichtung

Die Signalreihenfolge der Signale A und B bestimmen die Drehrichtung, und dementsprechend wird die aktuelle Position incrementiert oder decrementiert. Abhängig davon, an welchem Wellenende und in welcher Lage der Incremental-Geber montiert ist, wird die Zählrichtung positiv oder negativ. Durch Vertauschen der Signale A und B ist eine Zählrichtungsänderung möglich. Das H4-Modul ermöglicht dies jedoch auch ohne Verdrahtungsänderung, indem der Parameter 08 geändert wird. Dies erlaubt auch im Schema eine Vereinheitlichung der Verdrahtung, unabhängig von der Lage des Gebers.

6.9.3. Auflösung / Einheiten

Das H4-Modul arbeitet direkt in physikalischen Einheiten. So wird mit dem Parameter 01 die Einheit gewählt, in der gearbeitet werden soll (mm / Zoll / Grad / Impulse). Auf diese Weise ist es möglich, z.B. den Weg 233,56 mm direkt dem H4 Modul zu übergeben. Um eine optimale Zusammenarbeit mit der PCD-CPU und dem H4 zu ermöglichen und dennoch eine hohe Auflösung zu erreichen, wurde für floating point Werte das 'Virtual Integer' Format gewählt, d.h. alle Werte werden ganzzahlig, mit einer virtuellen Kommastelle, welche in Parameter 96 definiert ist, übergeben.

Ganzzahlige Werte (integer) sind von dieser Umwandlung nicht betroffen. In der Befehlsliste sind die Befehle, welche für Parameter das "Virtual Integer" Format verwenden mit "VI" bezeichnet.

Die Grundgenauigkeit für die Fliesskommawerte beträgt 7½ Digit, d.h. alle Werte welche in diesem Format berechnet werden, wie z.B. die Position, sind bis zur 7. Dezimalstelle exakt. (Bsp.: 0,001 mm auf 10m Weg).

Um die Achsposition (ohne Umrechnung) inkrementgenau anzuzeigen stehen spezielle Befehle zur Verfügung (QPI'x', ...)

6.10 Umkehrspiel / Backlash

Eine Achse mit einem Spindelantrieb hat meist ein Umkehrspiel. Wird die Wegrichtung geändert, so fährt die Achse den gewünschten Weg minus das Umkehrspiel, also nicht exakt den gewünschten Weg.

Bild 6.10

Die Genauigkeit einer Maschine wird durch das Umkehrspiel erheblich verschlechtert. Entweder wird eine spielfreie Mechanik eingesetzt, die oft sehr teuer ist oder aber dieses Spiel wird durch die Umkehrkompensation auf 'Null' gesetzt.

Das H4-Modul besitzt diese Möglichkeit. Das Umkehrspiel kann im Parameter 14 eingestellt werden (siehe Parameterliste 7.6.4) und wird beim Ändern der Richtung zum Verfahrweg addiert. Wird die Richtung nicht geändert, ist das Spiel bereits aufgehoben und es wird keine Korrektur vorgenommen.

Umkehr Korrekturgeschwindigkeit

Mit dem Parameter 63 kann die Geschwindigkeit eingestellt werden, mit welcher das Umkehrspiel aufgehoben wird. Diese kann unter Umständen höher sein als die normale Geschwindigkeit, da nur der Motor und die Spindel bewegt werden müssen.

Bereich = 10... 100% der max. Geschwindigkeit (Parameter 30).

6.11 Elektronisches Getriebe

Bei der Kopplung (Link) der Y-Achse an die X-Achse werden alle Wegbefehle auf die X-Achse auch auf der Y-Achse ausgeführt. Das Übersetzungsverhältnis kann in Parameter 07 eingestellt werden, in diesem Fall Y/X. Diese Kopplung (Link) ist nur in eine Richtung wirksam (Y übernimmt die X-Befehle und nicht umgekehrt). Ist die Kopplung in beide Richtungen gewünscht, so müssen die Kopplungen in beiden Richtungen gesetzt werden. Der Link Y an X und der Link X an Y. Es ist dabei darauf zu achten, dass die zweite Kopplung das inverse Übersetzungsverhältnis zur ersten hat (1/2 und 2/1). Das elektronische Getriebe wird als lineare Interpolation gerechnet. Somit sind die Vektorgeschwindigkeit SV und die Vektorbeschleunigung SA resp. SD wirksam.

Bild 6.11

Eine Maschine hat zwei weit auseinander liegende Achsantriebe, die synchron miteinander fahren sollen. Die mechanische Kopplung ist schwierig zu lösen oder sehr teuer. Es bietet sich also eine Lösung mit zwei einzelnen Antrieben an, welche synchron miteinander verfahren und dadurch, wie durch ein Getriebe verbunden sind. Man spricht daher von einem 'Elektronischen Getriebe'.

Im Bild 6.11 ist eine virtuelle Achsverbindung der beiden Räder eingezeichnet. Wäre diese vorhanden, könnte der Wagen nicht geradeaus fahren, da der Umfang der Räder unterschiedlich ist. Durch das 'Elektronische Getriebe' ist es möglich, diese beiden Räder mit unterschiedlichen Durchmessern mit Einzelantrieben auszurüsten und im richtigen Verhältnis miteinander synchron laufen zu lassen, so dass der Wagen geradeaus fährt. Wenn X als Master gewählt wird, muss P 'x' 06 = 2 (Achse Y) und P 'x' 07 = Y/X gesetzt werden.

6.12 Funktion "Trigger-Out"-Signal

Pro Achse steht ein "Trigger-Out"-Signal zur Verfügung. Mit diesem Ausgang kann eine sehr genaue und schnelle Reaktion, abhängig von der Achsposition, realisiert werden. Überschreitet die Achse den durch den Befehl SOx (Abschnitt 7.5.5, Zelle 2.14) gesetzten Wert P, wird das "Trigger-Out"-Signal aktiviert. (Dieses Signal steht dem Anwender an der Busklemme 1 oder 9 des H4-Moduls zur Verfügung).

Der Positionswert, welcher das "Trigger-Out"-Signal aktiviert, wird mit dem SOx-Befehl in das H4-Modul geschrieben. Der Wert wird in der im H4 gewählten Einheit verwendet. Ist diese Einheit ungenügend, so kann der Positionswert mit dem SOIx-Befehl impulsgenau geladen, respektive gesetzt werden. Beim Ausführen des SO..-Befehls wird das Statusbit (21 bei X-Achse) gelöscht und das "Trigger-Out"-Signal desaktiviert. SOx (Abschnitt 7.5.5, Zelle 2.12)

Überfährt die Achse nun den gesetzten Positionswert in der einen oder anderen Richtung, so wird das "Trigger-Out"-Signal aktiviert und das Statusbit gesetzt.

Die Polarität des Trigger-Ausgangs kann mit dem Parameter 62 gewählt werden.

Bei der Überschreitung der Triggerposition und P62 = 0 wird der Ausgang = H (positive Logik). Der inaktive Zusatnd ist = L.

Bei der Überschreitung der Triggerposition und P62 = 1 wird der Ausgang = L (negative Logik). Der inaktive Zusatnd ist = H.

6.13 Funktion "Position Capture Input"-Signal

Dieser Hardware-Eingang auf dem H4-Modul ist für jede Achse einmal vorhanden. Wird diese Funktion aktiviert (SC 'x'), so wird beim Ansprechen des Eingangs 'PCI' (Busklemme A oder B) der aktuelle Positionswert der Achse im "Position Capture"-Register gespeichert. Dieser Wert kann anschliessend aus dem H4 ausgelesen werden (QC 'x'). Wurde eine Capture-Position erfasst, wird das entsprechende Statusflag 'C' der Achse gesetzt (Abschnitt 7.5.5, Zelle 2.12).

Folgende Befehle, Parameter und Flag gehören zur "Position Capture"-Funktion:

SC 'x'- / QC "x"- Befehl Flag 'PCI eingetragen' (für X-Achse = Flag 15)

Beispiel:

Mit einem Messkopf an einem kartesischen Roboter wird ein Werkstückrand ausgemessen. Spricht der Messkopf an, wird sofort die aktuelle Position gespeichert. Diese kann dann aus dem H4-Modul ausgelesen werden.

6.14 "Change on the fly" - Funktion

Verschiedene Parameter werden beim Ausführen von Befehlen verrechnet oder berücksichtigt. Wurde der Befehl im H4-Modul interpretiert und an den Ausführungsprozess weitergegeben, können die Parameter verändert werden, haben jedoch erst auf den nächsten Befehl eine Auswirkung.

Die in der Parameterliste (Abschnitt 7.6) in der Rubrik "change on the fly" mit 'JA' gekennzeichneten Befehle haben jederzeit Einfluss auf die Achse. Werden diese während einer Bewegung geändert, wirken diese sofort auf die Achse.

So können z.B. die Regelparameter während der Bewgung verändert werden und haben auch sofort Einfluss auf die Regelung. Im Jog-Betrieb kann auch während des Verfahrens die Jog-Geschwindigkeit verändert werden und die Geschwindigkeit wird "fliegend" geändert.

6.15 Beschreibung von zirkularen periodischen Achsen

Mit dem Parameter P'x'05 wird angegeben, ob eine Achse linear (**n=0**) oder rotierend (**n>0**) behandelt wird. Eine lineare Achse ist hardwaremässig in der Bewegung durch Endschalter begrenzt. Eine rotierende Achse hat keine Begrenzungen.

Dieser Parameter definiert die Überlaufposition (Periode) der rotierenden Achse. Der Anzeigebereich des 'OPX'-Befehls liegt immer innerhalb der definierten Periode, da die Endposition und die Anfangsposition am physikalisch selben Ort liegen. Am Bereichsende wechselt die Position vom Maximalwert auf Null oder von Null auf den Maximalwert, abhängig von der Drehrichtung. Es kann also maximal ein Weg von P'x'05/2 (halbe Periode) gefahren werden. die Bewegung wird immer in der Richtung des kürzeren Weges ausgeführt.

Wird in mm oder inches gearbeitet (P'x'01 und P'x'03), entspricht die Überlaufposition P'x'05 dem Umfang der Rotationsachse. Wird in Winkelgraden gearbeitet, wird P'x'05 normalerweise auf 360° gesetzt. Für die Einheit 'Impulse' siehe Beispiel 1.

Beispiel 1: Eine rotierende Scheibe mit 16 Positionen ist von einem Motor direkt angetrieben.

Ein Encoder mit 2000 Impulsen/Umdrehung ist auf der Motorenachse befestigt. Die Bewegung soll in 16 Schritten unterteilt werden.

Die Parameter für die Achse 'x' werden:

P'x'01 = 2 (Einheit = Winkelgrade) P'x'02 = 2000 (Impulse /Umdrehung) P'x'03 = 16 (16 Schritte/Umdrehung) P'x'05 = 16 (16 Schritte/Umdrehung)

Die Bewegungsbefehle können somit direkt in Schritten eingegeben werden

'x'A = 2 Achse 'x' fährt zum 2. Segment der Drehscheibe. (Die Bewegung erfolgt im Gegenuhrzeigersinn

mit:

'x'A = 18 führt die Achse die genau gleiche Bewegung wie 'x'A2 aus (18 - 16 = 2) Die zusätzliche Umdrehung wird nicht ausgeführt.

Die Endposition ist in beiden Fällen OP'x' = 2.

Beispiel 2: Laufband-System mit Bewegungseinheit in Schritten.

Die Zahnräder haben 8 Zähne. Ein Encoder mit 200 Impulsen/Umdrehung ist auf der Zahnradachse befestigt. Das Laufband ist in 48 Schritte unterteilt.

Die Parameter werden.

P'x'01 = 2	(Einheit = Winkelgrade)
P'x'02 = 2000	(Impulse/Umdrehung)
P'x'03 = 8	(Schritte/Umdrehung Motor)
P'x'05 = 48	(Schritte/Umdrehung Laufband)

Die Bewegung wird in Schritten eingegeben:

Notizen

7. Programmerstellung

7.1. Einführung

Die "PCD4.H4..Motion Control"- Einheit hat eine Vielzahl von Befehlen und Parametern. Die Parameter für Modul, System oder Achseinstellungen können in verschiedenen Betriebslagen geändert werden. Nebst den Befehlen für "Motion Control" stehen auch spezielle Befehle für "System Control" und "Program Control" zur Verfügung. Alle Befehle und Parameter können durch zwei verschiedene Arten des Zugriffs geändert oder gelesen werden.

- a.) von der CPU der PCD aus mit Standard-FBs via PCD-Bus.
- b.) vom PC aus via Frontstecker am H4.

7.2 Programmierkonzept

Die Programmierung des H4-Moduls kann grundsätzlich in zwei Arten aufgeteilt werden:

- a) Programmierung des H4-Moduls mit dem CP-Tool
- b) Programmierung des H4-Moduls durch die PCD-Anwendersoftware

Für beide Möglichkeiten gilt jedoch:

- Der Benutzer kann mit verschiedenen Befehlen oder Parametern das Modul einstellen und justieren.
- Ganze Bewegungs-Programme können ins H4-Modul geladen oder dem Modul zur Ausführung übergeben werden. (Programm Mode). Selbstverständlich können auch einzelne Befehle ausgeführt oder einzelne Parameter geändert werden (Immediate Mode). Verschiedene Anwender-Bewegungs-Programme können im H4-Modul hinterlegt und bei Bedarf zur Ausführung gebracht werden.

a) Programmierung des H4-Moduls mit dem CP-Tool

Das Commissioning/ Programming-Tool, "CP" genannt, läuft auf einem Personalcomputer (PC) und ist via serieller Schnittstelle mit dem PCD4.H4 verbunden. Dieses Tool ist speziell für das H4-Modul entwickelt worden und kann alle Funktionen des H4 ausführen. Das CP-Tool kann nicht nur Bewegungs-Programme editieren und in das H4-Modul laden, es kann diese Programme auch auf der Festplatte speichern. Nebst den Programmen können auch alle Parameter geändert und ebenfalls auf der Festplatte gespeichert werden.

b) Programmierung des H4-Moduls durch die PCD-Anwendersoftware.

Zur Ansteuerung des H4-Moduls von der PCD-Anwendersoftware her, stellt die Firma SAIA-Burgess Electronics Standard-FBs zur Verfügung. Dadurch kann der Anwender durch einfaches Aufrufen von FBs alle gewünschten Funktionen im H4-Modul ausführen lassen. So können komplexe Bewegungs-Programme in der PCD- Aplikationssoftware erstellt werden. Ebenso ist das Ändern von Parametern durch Aufrufen von FBs in der Applikationssoftware sehr einfach gelöst. Durch spezielle Funktionen können auch ganze Verfahr-Programme in das H4-Modul geladen werden. Zur Sicherung von Verfahrprogrammen, welche mit dem CP-Tool editiert wurden, können diese aus dem H4-Modul ausgelesen, in der PCD gespeichert und auch wieder ins H4-Modul geladen werden.

Synchronisierung von Programmen

Erstellte Programme können mit RUN'p' (p = Programm Nr. 1...9) unmittelbar und unabhängig voneinander gestartet werden.

Mit BREAK'p' können diese nach der Ausführung des laufenden Befehls gestoppt werden. Werden mehrere Befehle 'blended' ausgeführt, werden diese wie ein Befehl behandelt und können mit BREAK nicht einzeln unterbrochen werden.

Die Funktion RUN kann auch hardwaremässig mit dem Starteingang (Klemme 15) und die Funktion BREAK mit dem Stopeingang (Klemme 7) realisiert werden.

Mit dem Parameter 95 wird angewählt auf welches Programm die Startund Stop-Eingänge wirken.

Sollen Programme verschachtelt werden (max. 4 Ebenen), kann der RUN Befehl innerhalb eines Programms aufgerufen werden:

Bsp. 1 - XA20 2 - RUN3 3 - XA40 4 - END

Wenn zwischen zwei 'blended' ausgeführten Bewegungen ein anderes Programm gestartet werden soll, ist zu beachten, dass der RUN-Befehl in dem Moment ausgeführt wird, wo die Überblendung einsetzt, also etwas vor der Position 20 (abhängig von P44 und der Geschwindigkeit). (Siehe auch Abschnitt 6.6 'Blended move').

Für positionsabhängige Aktionen kann der Trigger-Ausgang verwendet werden.

Sollen Programme nur bis zu einer bestimmten Zeile abgearbeitet werden, kann mit dem Befehl STOP ein 'Break point' gesetzt werden:

Bsp. 1 - XA20 2 - STOP 3 - XA40 4 - END

Der Programmstop kann mit RUN'p' unmittelbar oder aus einem anderen Programm verschachtelt oder auch mit dem HW-Eingang Start wieder aufgehoben werden.

Um den Programmablauf zu verfolgen, kann mit dem Befehl QL'p' (p = Programm Nr.) die Programmzeile abgefragt werden, welche momentan ausgeführt wird. Ist das Programm beendet (oder noch nicht gestartet), wird 0 zurückgegeben.

7.3 Programmierung mit CP-Tool (Commissioning / Programming tool)

Das 'Commissioning / Programming Tool' (CP) ist eine Software für einen IBM kompatiblen PC. Das Tool läuft unter dem Betriebssystem DOS. Die Installation und das Programmieren sind sehr einfach.

7.3.1 Installation

Durch Kopieren aller Dateien von der Diskette auf die Festplatte z.B. ins Verzeichnis \SAIA-H4 ist die Installation erfolgt. Es werden ca. 2 MByte freier Speicher auf der Harddisk sowie ca. 600 kBytes freier Arbeitsspeicher benötigt. Durch Aufrufen aus dem DOS-Prompt 'CP' <CR> wird das Programm gestartet. Nach dem Starten des CP erscheint das SAIA-Signet.

Durch Betätigen einer beliebigen Taste erscheint das "Pull down"-Menü.

😂 NC - CP		_ 🗆 X
SAIA H4 COMMISSIONING PROGRAM UDD1 Configuration Motion Graphics Utility Program edit Ierminal mode	10/04/1997 09:38	

Mit den Tasten < \downarrow >, < \uparrow >, < \leftarrow > und < \rightarrow > kann der Cursor zur Menüwahl verschoben werden.

Das Öffnen eines Menüs erfolgt mit <CR>. Erklärungen der Menüpunkte siehe Abschnitt 7.3.3 Menü 'Erklärung'.

<ESC> = Menü

Durch Betätigen der <ESC>-Taste wird das Pulldown-Menü aktiviert.

Die Taste F1 wird nicht dargestellt. Diese dient zum Aufrufen der Hilfe.

7.3.2 Menü-Übersicht

-	Configuration
	- Serial communication parameter
	- Axis parameter
-	Motion
	- Program edit
	- Terminal mode
-	Graphics
	- Graphics
-	utility
	– Language change
	- Color change
	- Graphics color change
	- Select color for Text in graphic
	- DOS Shell
	- Quit

Wird ein Menü gewählt, so werden noch weitere Funktionstasten dargestellt.

Für 'Program Edit' sind z.B. die folgenden Tasten verfügbar:

	F8	Analyse	F5	Delete line	F6	Insert line	- F7	Paste line
	ESC	Menu	F2	Read/Upload Prg.	F3	Save/Downl. Prg.	- F4	From/To PC dis
I								

Folgende Funktionstasten stehen zur Auswahl:'

<F4> = From/To H4 mod

Die Funktionstaste 4 setzt das Ziel und die Quelle der Daten für die beiden Funktionen F2 und F3 fest (PC oder H4).

<F2> = Read/Upload Prg.

wenn $\langle F4 \rangle = PC$:

• Liest die Datei .cnf (config) in den CP-Arbeitsspeicher wenn $\langle F4 \rangle = H4$:

• Liest die Konfiguration aus dem H4 in den CP-Arbeitsspeicher

<F3> = Save/Downl. Prg.

wenn $\langle F4 \rangle = PC$:

• Speichert die Konfig. aus dem CP-Arbeitsspeicher auf die Festplatte.

wenn $\langle F4 \rangle = H4$:

• Lädt die Konfiguration aus dem CP-Arbeitsspeicher ins H4.

7.3.3 Menü Erläuterung

Die nachfolgend beschriebenen Funktionen sind entsprechend dem Hauptmenü gegliedert.

Configuration

'Serial communication parameters'

Es kann das COM-Port des PCs gewählt werden. (COM1: oder COM2:). Die Kommunikationsparameter sind fix (9600,8,E,1).

'General parameters'

Die relevanten Parameter, welche für das H4-Modul generell gelten, können eingestellt werden. Es sind dies die Parameter 90 ... 98.

Funktionstasten-Beschreibung:

Sind alle Parameter richtig eingestellt, so können diese mit $\langle F3 \rangle$ gespeichert werden. Das Ziel der Speicherung muss vorgängig mit der $\langle F4 \rangle$ -Taste festgelegt werden (H4 oder PC). Mit $\langle F2 \rangle$ können die Parameter wieder gelesen werden (mit $\langle F4 \rangle$ anwählen ob vom H4 oder vom PC).

'Axis parameters'

Alle Parameter der Achsen werden angezeigt. Einige Parameter sind von den Einstellungen der anderen abhängig. Es empfiehlt sich daher, die Parameter von oben nach unten auszufüllen. Die Limiten werden im Edit-Fenster angezeigt.

Durch das Betätigen der Funktionstaste <F8> kann die nächste Achse gewählt werden. Speicherung siehe 'General Parameter'.

Motion

'Program edit'

Der Programmeditor arbeitet offline, d. h. es können Programme geschrieben, geändert und gespeichert werden ohne mit dem H4-Modul verbunden zu sein. Wird eine Verbindung zum H4 hergestellt und mit der <F4>-Taste angewählt, so können Programme vom H4 gelesen oder ins H4 geladen werden. Es können max. 9 Programme ins H4 geladen werden (siehe auch Abschnitt 6.2.2). Die Befehle werden im H4-Modul abgelegt, jedoch noch nicht ausgeführt.

Um die Eingabe eines Befehls auszuführen, wird die <Enter>-Taste (<,->) betätigt. Ein Editierfenster am unteren Rand des Bildschirms wird geöffnet und erlaubt die Eingabe des gewünschten Kommandos. Die möglichen Kommandos oder Parameter und ihre Funktion können dem Abschnitt 7.5 'Befehlsliste' und Abschnitt 7.6 'Parameterliste' entnommen werden.

Folgende Funktionstasten stehen zur Auswahl:'

<F4> = From/To H4 mod

Die Funktionstaste 4 setzt das Ziel und die Quelle der Daten für die beiden Funktionen F2 und F3 fest (from/to PC dis oder from/to H4 Mod).

<F2> = Read/Upload Prg.

wenn $\langle F4 \rangle =$ from/to PC dis

• Liest die Datei .prg (program) in den CP-Arbeitsspeicher wenn <F4> = from/to H4 Mod

• Liest ein Programm aus dem H4 in den CP-Arbeitsspeicher

<F3> = Save/Downl. Prg.

wenn $\langle F4 \rangle =$ from/to PC dis

• Speichert ein Programm. aus dem CP-Arbeitsspeicher auf die Festplatte.

wenn $\langle F4 \rangle =$ from/to H4 Mod

• Lädt ein Programm aus dem CP-Arbeitsspeicher ins H4.

<F8> = Analyse

• prüft die eingegebenen Programmzeilen auf Syntaxfehler und zeigt in einem Fenster die fehlerhaften Zeilen an.

<F5> = Delete line

• löscht die aktuelle Programmzeile und schliesst die nachfolgenden Linien auf. Die gelöschte Zeile wird zwischengespeichert (Funktion 'Cut')

<F6> = Insert line

• schiebt eine leere Programmzeile auf der aktuellen Zeile ein und verschiebt die nachfolgenden Zeilen.

<F7> = Paste line

• schiebt die zuletzt gelöschte Programmzeile auf der aktuellen Linie ein und verschiebt die nachfolgenden Zeilen.

Vor dem Laden eines Programms ins H4-Modul, wird die Syntax überprüft und bei Fehlern auf die fehlerhafte Zeile verwiesen. Wurden Fehler erkannt, wird das Programm nicht geladen. Ein korrekt geladenes Programm kann im Terminal-Modus gestartet werden.

Die Einstellung der Funktionstaste <F4> ist immer zu beachten, um sicherzustellen, dass das Programm am gewünschten Ort gespeichert wird.

Befehle, welche gemäss Befehlsliste nur im Immediate-Modus ausgeführt werden können, werden im Programm nicht akzeptiert. Wenn P94 = 2 (axis present = x, y) werden Befehle und Parameter für Achse Z und W nicht akzeptiert.

'Terminal mode'

Im Gegensatz zum Programmeditor werden hier die eingegebenen Befehle oder Parameter sofort ausgeführt (Immediate: siehe auch Abschnitt 7.5.1 Syntaxerklärung, Kasten 'Ausführungsmode'). In diesem Fenster erscheinen weitere Funktionstasten.

<ESC Menu> <F9 Previous commands REV> <F10 Previous commands FOR.>

'ESC Menu': Verlassen des Terminal-Modus, zurück zum Menü.

F9 Previous commands reverse

F10 Previous commands forward

Die Eingabezeile besitzt einen 10-zeiligen Ringbuffer. Dieser kann rückwärts <F9> oder vorwärts <F10> gerollt werden, um vorgängig eingegebene Befehlszeilen auf einfache Weise wieder zu verwenden. mit <CR> (<,)) wird auch die letzte Eingabe in die Befehlszeile geholt. Es ist möglich, mehrere Befehle, durch Leerschläge getrennt, in die Eingabezeile zu schreiben, wobei diese Befehle dann praktisch gleichzeitig ausgeführt werden.

Beispiel: QPX QVX QEX <CR>

Programm ausführen:

Ein ins H4 geladene Programm kann durch den Befehl "RUN" + Programmnummer gestartet werden. Es ist jedoch zu beachten, dass die Parameter gesetzt und geladen sind und dass die relevanten Achsen korrekt initialisiert worden sind (es ist 'Enable' und 'Home' zu beachten).

Zum oben (rechts) erscheinenden Achsenstatus-Fenster siehe Abschnitt 7.5.5, Zelle 2.12, wobei die aktiven Bit mit einem Buchstaben oder Zeichen angezeigt werden (z.B. 'Limit switch positiv erreicht', '+' und 'h')

Graphics

'Graphics'

Dieser Mode erlaubt dem Benutzer verschiedene Funktionen der Achse zu betrachten. Der Benutzer kann diese Grafik beim Einrichten der Achse nutzen. Verändert der Benutzer die PID-Parameter, so kann er anhand der Grafik die Auswirkungen direkt erkennen. Die veränderten Regelparameter werden erst beim Auslösen der Datenerfassung mit <F4>/<F5> aus dem H4 übermittelt. Anschliessend an eine Testbewegung benötigt das CP eine kurze Zeit, um die erfassten Messwerte vom Modul an den PC zu übertragen und darzustellen. Es können max. 4 Kurven der mit <F8> angewählten Achse aufgezeichnet werden. Zur Auswahl stehen 'Ist-Position', 'Soll-Position', 'Schleppfehler', 'Soll-Geschwindigkeit', 'Soll-Beschleunigung', 'Analog-Ausgangsspannung'.

Die dadurch gefundenen Parameter müssen anschliessend ins EEPROM nullspannungssicher abgelegt werden.

Die meisten Funktionstasten und anderen Angaben auf diesem Bildschirm sind selbsterklärend. Hier in Kürze einige ergänzende Hinweise:

Mit <F5> werden das mit <F3> gewählte Programm gestartet, die Datenerfassung ausgelöst und die Regelparameter an das H4 übertragen.

Mit <F4> werden die Datenerfassung gestartet und die Regelparameter an das H4 übertragen. Diese Funktion ist für eine sich bereits in Bewegung befindliche Achse vorgesehen.
<u>Utilitiy</u>

'Language change'

Die Sprache des CP kann hier gewählt werden. (ENG, ITA, [GER, FR])

'Color change'

Die Farben der Fensterdarstellungen mit Vordergrund und Hintergrund können gewählt werden. Monochrom ist auch wählbar. Durch das Betätigen der Pfeiltasten $< \rightarrow >$ oder $< \rightarrow >$ können die verschiedenen Fensterbereiche gewählt werden. Mit <CR> und dann der <Space> Taste erfolgt die Farbwahl; <F4> monochrom, <F5> Grundeinstellung.

'Graphics color change'

Die Farben im Grafikfenster mit Vordergrund und Hintergrund können gewählt werden.

'Select color for Text in graphic'

Die Farben der Texte in der Grafik können gewählt werden, um so die optimale Darstellung der Grafik zu erreichen. Farbwahl siehe oben.

'DOS Shell'

Temporäres Verlassen des CP ohne Datenverlust im Arbeitsspeicher. (Zurück mit 'Exit')

'Quit'

Verlassen des CP. Beim Beenden gehen die Daten im Arbeitsspeicher verloren. 'Quit' kann auch mit $\langle Ctrl \rangle + \langle z \rangle$ veranlasst werden.

Notizen

7.4 Programmierung mit FBs

In diesem Teil des Handbuchs wird erklärt, wie die Standard-FBs von SAIA-Burgess Electronics für das H4-Modul zu verwenden sind. Die Parameter und das Aufrufen der FBs werden beschrieben. Die Erklärungen zu den einzelnen H4-Befehlen (Commands) oder Parametern wird in den Abschnitten 7.5 'Befehlsliste' und 7.6 'Parameterliste' erklärt.

7.4.1 Einführung

Der Anwender erstellt eigene Programme (siehe Bild 7.04 "Anwenderprogramm") indem er die drei Treiber-FBs für das H4-Modul aufruft. (siehe Bild 7.4 "H4-FBs"). Zuerst muss mit dem 'fbInitH4' das Modul initialisiert werden (meist im XOB 16). Im COB muss der 'fbStatH4' zyklisch aufgerufen werden, damit der Status des H4 aufgefrischt wird. (Die aktualisierten Statusflags können im Anwenderprogramm weiterverarbeitet werden.). Um Befehle zu senden oder Parameter zu verändern, muss zuerst das entsprechende Kommando in das Laderegister (rComH4) geladen werden. und anschliessend der 'fbExecH4' aufgerufen werden. Um hier einen leichten Überblick zu erhalten, ist das Bild 7.04 zu betrachten. Die beiden FBs 'fbUpLdH4' und 'fbDnLdH4' sind für den Transfer von ganzen Programmen vorgesehen (Abschnitt 7.7).

Ein Anwender-Programm muss assembliert, gelinkt und anschliessend in die CPU geladen werden. Das Einbinden der Treiber-FBs wird im Abschnitt 7.4.4 erklärt.

7.4.2 Adressierung des H4-Moduls

Das Modul benötigt, wie alle andern PCD4-Module, 16 Adressen. Die tiefste Adresse des Moduls ist die Basis-Adresse. alle weiteren Adressen werden entsprechend verwendet. Der Anwender muss also die Basis-Adresse des Moduls und die Basis-Adresse der Flags definieren. (siehe 'fbInitH4'-FB).

	Data read	Data write
0	Data bit 0 (LSB)	Data bit 0 (LSB)
1	Data bit 1	Data bit 1
2	Data bit 2	Data bit 2
3	Data bit 3	Data bit 3
4	Data bit 4	Data bit 4
5	Data bit 5	Data bit 5
6	Data bit 6	Data bit 6
7	Data bit 7 (MSB)	Data bit 7 (MSB)
8	Data available	Write (WR)
9	Channel busy	Read (RD)
10	User Error Set	Clear channel
11	DSP Ready	Reset DSP
12	Axis X "in-position"	
13	Axis Y "in-position"	
14	Axis Z "in-position"	
15	Axis W "in-position"	

Die Bedeutung der der einzelnen Adressen: (+ Basis-Adressen)

Die Eingänge 12 .. 15 (Axis in position) dienen nur zur Information im Debugger. Für die Programmierung sollten, um Timingproblemen vorzubeugen, die entsprechenden Statusflags abgefragt werden.

7.4.3 Vorsteuern der Statusflags

(Statusflag siehe Abschnitt 7.5.4, Zelle 2.12)

Durch das Ausführen bestimmter Befehle mit dem Funktionsblock (FB) 'fbExecH4' werden einige Statusflags sofort nachgeführt (Vorsteuern), bevor durch den FB 'fbStatH4' die Statusflag aufgefrischt werden. Dies erleichtert das Verwenden der FBs. Das Aufrufen des FB 'fbStatH4' zwischen zwei 'fbExecH4' ist daher nicht notwendig. Ein zyklischer, asynchroner Aufruf des FB 'fbStatH4' ist ausreichend. Die Statusflags werden nur durch den 'fbStatH4' aufgefrischt, was bei der Programmierung berücksichtigt werden muss.

Folgende Statusflag werden vorgesteuert:

- Achse in Pos. (8)
- Immediate Befehl in Ausführung (9)
- Capture-Pos. eingetroffen (15)
- Trigger-Position erreicht' (21)

Grösse der H4FB-Software (Zeilen):

• Home ist erfolgreich beendet (23)

7.4.4 Software Bibliothek mit Funktionsbausteinen (PCD9.H4..)

Das Standard-FB-Paket zum H4-Modul beinhaltet drei Dateien:

H4DEF.SRC	In dieser Datei befinden sich nur die Definitionen der Basisadressen der Resourcen (Flags, Register, FBs). Der Anwender kann hier seine Basisadressen definie- ren. Diese Datei wird im H4FB included.
H4EXTN.DEF	In dieser Datei befinden sich alle notwendigen Dekla- rationen, welche der Anwender in seinem Programm verwenden kann. Diese Datei muss im Anwenderpro- gramm mit '\$include' eingebunden werden.
H4FB.SRC	Diese Datei enthält den FB-Sourcecode sowie alle Deklarationen, welche innerhalb der FBs verwendet werden. Diese Datei darf nicht verändert und nicht mit SEDIT editiert werden.
Benötigte FB-Ver	schachtelungen: 1

< 4200

7.4.5 Dateien assemblieren und linken

Das folgende Bild 7.4.4 zeigt, wie die FBs des H4-Moduls in die Anwender-Software integriert werden können.

Bild 7.4.4

Die in den H4-FBs verwendeten Basisadressen werden in der Datei H4DEF.SRC vom Anwender für seine Anwendung eingestellt/definiert. Er muss also die Datei H4DEF.SRC verändern. Die ebenfalls von SAIA gelieferten Dateien H4FB.SRC und H4EXTN.DEF sollten nie durch den Anwender verändert werden.

Um die verschiedenen H4-Funktionen aus dem Anwender-Programm aufzurufen, muss dieses auch den Zugriff auf die Definitionsdatei H4EXTN.DEF haben. Daher wird die H4-Definitionsdatei bei jeder Anwenderdatei eingebunden (mit \$include H4EXTN.DEF).

Der Anwender kann seine projektbezogenen Definitionen in einer eigenen Deklarationsdatei definieren, welche ebenfalls ins Anwenderprogramm eingebunden werden muss. Falls der Anwender die H4-Definitionen BAF, BAR und BAFB in seinem Programm auch verwenden will, muss er die Datei H4DEF.SRC entweder im Anwenderprogramm oder in seiner eigenen Deklarationsdatei einbinden.

7.4.6 Beschreibung der FB

Zur Vereinfachung sind alle FB auf die gleiche Art beschrieben. Das nachfolgende Bild erklärt die graphische Darstellung der nächsten Seiten.

NAME	Funktion:	-Text	NAME
Soft	ware:		
Eingänge 		NAME	Ausgänge
Funktionsbes	chreibung:		
Eingänge und	Ausgänge		
Andere Detail	S:		

Für das Format und die Einheiten der eingegebenen Werte sind die Parameter P01 und P96 massgebend (siehe Abschnitt 6.9.3)

FbInitH4 Funktion: - H4-Modul Initialisieren	FbInitH4
--	----------

Achtung:

Der FB prüft die CPU Leistung, es ist daher zwingend, den FB nur in der Kaltstart-Routine (XOB16) aufzurufen. (Hier muss dieser FB nach den PCD-Befehlen und **vor dem DEFTB** eingefügt werden).

* abhängig von der CPU Leistung

Funktionsbeschreibung:

Diese Funktion wird zur Initialisierung des H4-Moduls und den dazu benötigten PCD Recourcen verwendet. Für jedes H4-Modul muss beim 'PowerUp' (XOB16) ein 'fbInitH4'-FB aufgerufen werden.

Werden mehrere H4-Module in einem PCD4-System verwendet, muss mit der Flag-Basisadresse sichergestellt werden, dass sich die Flag-Bereiche der verschiedenen Module nicht überschneiden.

Symbol	Beschreibung	Para-		Media	
		meter		_	_
			Туре	Format	Adr-Bereich
ModulBase	Modul Basisadresse	Ja	Κ	Integer	0 -512
FlagBase	Flag Basisadresse	Ja		Integer	0 -8192
ModulTyp	Modulwahl H420 / H440	Ja	Κ	Integer	2 oder 4

Beschreibung der Ein- und Ausgänge:

FbStatH4 Funktion: - Lese Status des H4-Moduls

FbStatH4

* abhängig von der CPU Leistung

Funktionsbeschreibung:

Diese Funktion liest das Status-Register für jede Achse aus dem H4-Modul. Das Status-Register wird anschliessend auf die Statusflags ausgegeben und kann somit vom Anwender abgefragt werden. Die Basis für die Statusflags wird von der Funktion 'fbInitH4' übernommen. Die Offset und die Bedeutung der einzelnen Statusflags sind in der Befehlsliste Abschnitt 7.5.3 (2.11) oder 6.2.6 beschrieben. Dieser FB muss zyklisch aufgerufen werden, damit die Achsenstatusflags aufgefrischt werden.

Beschreibung der Ein- und Ausgänge::

Symbol	Beschreibung	Para-		Media	
		meter			
			Type	Format	Adr-Bereich
ModulBase	Modul Basisadresse	Ja	Κ	Integer	0 -512
AxisNo	Achsnummer	Ja	-	Integer	0 - 15 (0-F)

Achsnummer:

00h : eine Achse/ Zyklus	04h : Achse Z
01h : Achse X	08h : Achse W
02h : Achse Y	0Fh : alle vorhandenen Achsen
	in einem Zyklus

Kombinationen sind auch möglich:

z.B: Ch oder 12d = :Es werden die Statusflag der Achsen Z und W aufgefrischt. (h = Hex; d= Dezimal)

Wird eine Achse adressiert, welche nicht existent ist, wird keine Funktion ausgeführt.

* abhängig von der CPU Leistung und Anzahl der Parameter

Funktionsbeschreibung:

Die Funktion 'fbExecH4' ist die befehlsausführende Funktion für alle Befehle und H4-Parameter. Diese Funktion kann die Daten des H4-Moduls schreiben oder lesen. Vor dem Aufruf dieses FBs muss das Register 'rComH4' mit dem entsprechenden Befehlswort geladen werden. Der FB selbst liest die ganze Information, welche zu erledigen ist, aus dem Befehlswort. Alle möglichen Befehlswörter sind im Abschnitt 7.5 aufgelistet.

Symbol	Beschreibung	Para-		Media	
		meter			
			Type	Format	Adr-Bereich
ModulBase	Modul Basisadresse	Ja	Κ	Integer♥	0 -512
P1*	Parameter 1	Ja	R	Integer♥	0 - 4095
P2*	Parameter 2	Ja	R	Integer♥	0 - 4095
P3*	Parameter 3	Ja	R	Integer♥	0 - 4095
P4*	Parameter 4	Ja	R	Integer♥	0 - 4095

Beschreibung Inputs und Outputs:

- * Die Anzahl der Parameter ist aus der Befehlsliste zu entnehmen.
- Integer bzw. "Virtual Integer", je nach Befehl (siehe Abschnitt
 6.9.3 und Befehlsliste Abschnitt 7.5)

Beispiel: siehe nächste Seite

Beispiel zu FbExecH4:

Dieses Beispiel zeigt eine absolute Bewegung (Immediate) der Achse X (siehe Abschnitt 7.5.4, Zelle 1.10)

Bemerkung:

Die FBs 'FbUpLdH4': H4-Programm lesen und 'FbDnLdH4': H4-Programm schreiben

sind im Abschnitt 7.7 "H4-Programme mit FBs schreiben und lesen" behandelt.

Notizen

7.5. Befehlsliste

7.5.1 Syntaxerklärung der Befehlsliste

7.5.2 Übersicht Befehlsgruppen:

Gruppe:

Beispiele:

7.5.4	Bewegungsbefehle	(XA100 / cir / Home / Zero /)
7.5.5	Achsensteuer-Befehle:	(Enable / Kill / Query Pos. Acc. / Decel.)
7.5.6	Spezial-Befehle:	(Out / Lock / Unlock)
7.5.7	Parameter-Befehle	(read & write Param.)
7.5.8	Programmsteuer-Befehle:	(run / step /
7.5.9	Programmstruktur-Befehle	(for / next /)
7.5.10	Programm List-Funktionen für nur Terminal (nur für CP)	(list)
7.5.11	Programm-Erstellungsbefehle	(open / close / erase)

BREAK	5.4
capture position	2.8-9
CIRcle mit Radius	1.14
CIRcle mit Winkel	1.15
CLOSE	8.2
DRIFT	2.18
EEPROM	4.4-5
ENABLE	2.2
END	6.8
Ep / Epn / Epn,m	8.3-5
Erase	8.3-5
EREAD	4.4
EWRITE	4.5
FO	2.1
FOR	6.1
Get parameter	4.3
GOSUB	6.4
GOTO	6.3
Gpn	5.2
	5.5
HOME	1.2
Interpoliere 2 Achsen	1.1
Interpoliere 3 Achsen	1.11
Interpoliere 4 Achsen	1.12
I- / IDN	1.13
$\frac{J}{J} + \frac{J}{J} $	1.7
log negativ	1.5
log positiv	1.1
log stop	1.5
IS	1.5
	23
List	7 1-3
List I.p./I.pn/I.pn m	7.1-3
Move Axis	1 10
NEXT	6.2
NORMAI	0.2
OPEN	2.17
Override	0.1
Dyn	<u> </u>
	4.1
	57
OM	J./
	ð.0 2 4 5
QF;QFI	2.4-5
	2.15
Query actual position error	2.7
Query actual velocity	2.6

7.5.3 Alphabetische Befehls- und Parameterliste mit Angabe der Zellennummer der nachfolgenden Tabellen

Query capture position	2.10-11
Query current execution line	5.7
Query memory lines free	8.6
Query Posotion	2.4
Query Status	2.12
Query user error	2.13
QV	2.6
RAPID	2.16
RESUME	5.6
RETURN	6.5
RUN	5.1
SA	1.8
SC	2.8-9
SD	1.9
Set acceleration	1.8
Set capture position	2.8-9
Set deceleration	1.9
Set output compare	2.14-15
Set parameter	4.1
Set position	2.11
Set Speed	1.6
Set vector speed	1.7
SO; SOI	2.14-15
SPLOCK	3.2
SPUNLOCK	3.3
Status	2.12
SS	1.6
STEP	5.3
STOP	6.6
SV	1.7
Verfahre eine Achse	1.10
VOUT	3.1
WA /WR	1.10
WAIT	6.7
XA /XR	1.10
XAp,YAq,ZAr,WAs /	1.13
XRp,YRq,ZRr,WRs	
XAYA / XRYR	1.11
XAYAZA /XRYRZR	1.12
YA /YR	1.10
ZA /ZR	1.10
ZERO	1.1

	Befehlswort für CP <i>für FBs</i>	i p Mode	Kurzbezeichnung Kurzerklärung	
1.1	<u>ZE</u> RO ''x''	i p	Set axis to zero	
	ZFRO ''r''''in''	0		
	LLKO x ip	U	Setze die Position der Achse	
			auf Null. Egal wo dieAchse	
			gerade steht, der Positionswert	
			geht verloren und wird auf '0'	
1.2		:	gesetzt.	Vonstouen
1.2	HOME X	1	Synchronize axis	Vorsteuern: Das Status-
	HOME''x''	0		Flag (23 für
		-	Synchronisiert die Achse mit	x-Achse)
			der Mechanik. Die Suchart der	wird ge-
			Home Pos. ist in den Param.	löscht.
			20-24 bestimmt.	
			Dieses kleine Ablaufprog.	
			CPU im H4 durchgeführt	
			Durch Abfrage des Flags	
			'Home' aus den H4-Status-Flag	
			kann festgestellt werden, wann	
			der Befehl 'Home' beendet ist.	
			Anschliessend wird die Ref.	
			Position (Par. 23) als Istpositi-	
			on geladen.	
			Home- und Jogbewegungen	
			Absolution Absolution Absolution Absolution	
13	I ⊥ '' v ''	i	Adscillet 7.0.5)	
1.5		1	sog positive (manuelles i amen)	
	<i>JUP''x''</i>	0		
			Jog - Betrieb: In dieser Be-	
			triebsart kann die Achse im	
			gesteuerten Mode verfahren	
			werden (nicht PID geregelt).	
			der Beschl. P'x'43 auf die ge-	
			setzte Geschw, und fährt bis	
			ein 'Jog stop'-Befehl gesendet	
			wird oder bis der PosLS	
			(HW/SW) erreicht ist. Für die	
			Verfahrgeschwindigkeit im	
			Jog-Betrieb siehe Befehl	
			'RAPID' und 'NORMAL'.	1

7.5.4 Bewegungsbefehle / Motion commands

7.5.4					
1.4	<u>J-</u> ''x''	i	Jog negati	ve	
	JDN''r''	0		stop'-Befehl	
		Ū		siehe 'J+ - Befehl	
1.5	<u>JS</u> ''x''	i	Jog stop		
	JS''x''	0			
				Der Jog - Betrieb der entspre-	
				chenden Achse wird mit der	
				Descelleration P'x'44 gestoppt.	
1.6	<u>SS</u> ''x'',s	ip	Set motion	ı speed	
	SS''x''''ip''	1	P1/s: VI	[unit/sec] Nie 0	
	•			$max = V_{max} (P 'x' 30)$	
				$Default = 1/10 V_{max}$	
				Setzt die Bewegungsge-	
				schwindigkeit der Achse. Gilt	
				nur beim Verfahren <u>einer</u> Ach-	
17	SV s	in	Set vector	sneed	
1.7	<u>5 v</u> 3	1 P		specu	
	SV''ip''	1	P1/s: VI	[unit/sec] Nie 0	
				Setzt die Vektor-	
				Geschwindigkeit der Bewe-	
				gung. Die Achsgeschwindig-	
				keiten werden vektoriell be-	
				cilt nur haim internaliartan	
				Verfahren mehrerer Achsen	
			2 Achsen:	$\mathbf{V} = \sqrt{\mathbf{V}_{x}^{2} + \mathbf{V}_{y}^{2}}$	
			3 Achsen:	$\mathbf{V} = \sqrt{\mathbf{V}_{x}^{2} + \mathbf{V}_{y}^{2} + \mathbf{V}_{z}^{2}}$	
			4 Achsen:	$V = \sqrt{V_x^2 + V_y^2 + V_z^2 + V_w^2}$	
1.8	<u>SA</u> a	i p	Set motion	acceleration	
	SA''ip''	1	P1/a: VI	[unit/sec ²] Nie 0	
			m	$ax = A_{max} (P'x' 33) \text{ pro Achse}$	
				Die Beschleunigung für inter-	
				polierte Bewegungen wird	
1.0	SD d	in	Sat mation	geladen.	
1.9	<u>50</u> a	тр	Set motion	i deceleration	
	SD''ip''	1	P1/d: VI	[unit/sec ²] Nie 0	
				$max = A_{max} (P'x33)$	
				Die Verzögerung für interpo-	
				lierte Bewegungen wird gela-	
				den.	

7.5.4				
1.10	''х''Ар	i p	Move axis absolute / relative	Vorsteuern: Die 'In Pos'-
	"r"A "in"	1	P1/n: VI [unit]	Flags wer-
	x A W	1	Der max Positionierbereich ist	den gelöscht
	$\Lambda = \Lambda$ oder D (abso		$2^{31} + 2^{31}$ Impulse	den gelösent
	A = A odel K (abso-		-2 $+2$ impulse (2 147*10 ⁹ + 2 147*10 ⁹)	
			(-2,147,10,+2,147,10)	
			Eliasekommo Eormat ouf 71/ Stallan ha	
			Filesskollina-Format auf 7/2 Stellen De-	
			grenzt. Details siene Adschnitt: 0.9.5	
			Fanre mit der gewaniten Achse auf die	
			Position p. wird ein LS wanrend der Be-	
			wegung aktiv, so wird die Achse "gekillt"	
			und das Störungsbit 2 sowie das entspre-	
			chende Achsenstatusflag gesetzt. Ein Frei-	
			fahren aus dem LS ist nur mit den Jogbe-	
			fehlen möglich.	
1.11	"x"Ap,"y"Aq	i p	Move 2 axis absolute / relative	Vorsteuern:
		_		Die 'In Pos'-
	'' <i>x''''y''A''ip''</i>	2	P1/p: VI Position/Weg der X-Achse [unit]	Flags wer-
			P2/q: VI Position/Weg der Y-Achse [unit]	den gelöscht
	A = A oder R (abso-			
	lut/relativ)			
	für alle Achsen gleich		Fahre linearinterpoliert zwei	
	z.B. XAp, ZAq		gewählte Achsen auf eine neue	
	XRp, WRq		Position 'p' und 'q'. (Gilt nur	
			für absolute Bewegung, für	
			relativ gilt: Weg).	
			Hinweis:	
			Die Achsen müssen immer in	
			der Reihenfolge x,y,z,w einge-	
			setzt werden. So geht z.B. nur	
			[xwAi] jedoch [wxAi] nicht.	
1.12	"x"Ap,"y"Aq,"z"Ar	i p	Move 3 axis absolute / relative	Vorsteuern:
				Die 'In Pos'-
	''x''''y''''z''A''ip''	3	P1/p: VI Position/Weg der X-Achse [unit]	Flags wer-
			P2/q: VI Position/Weg der Y-Achse [unit]	den gelöscht.
	A = A oder R (abso-		P3/r : VI Position/Weg der Z-Achse [unit]	
	lut/relativ)		Fahre linearinterpoliert drei	
	für alle Achsen gleich		gewählte Achsen auf eine neue	
			Pos. 'p', 'q' und 'r'.	
1.13	XAp,YAq,ZAr,WAs	i p	Move 4 axis absolute / relative	Vorsteuern:
				Die 'In Pos'-
	XYZWA''ip''	4	P1/p: VI Position/Weg der X-Achse [unit]	Flags wer-
			P2/q: VI Position/Weg der Y-Achse [unit]	den gelöscht.
	A = A oder R (abso-		P3/r : VI Position/Weg der Z-Achse [unit]	
	lut/relativ)		P4/s : VI Position/Weg der W-Ach. [unit]	
			Fahre linearinterpoliert die	
	für alle Achsen gleich		vier Achsen auf eine neue ab-	
			solute Pos. 'p', 'q', 'r' und 's'.	

7.5.4				
1.14	<u>CI</u> Rr,c,''x''Ap,''y''Aq	i p	Move circle with radius (abs. / rel.)	Vorsteuern:
		4	D1/m VI Doding [unit]	Die III Pos -
	CIK X Y A IP	4	P1/r. VI Radius [ullit] P2/c: L Dichtung: $Q = $ Ubragingersing	riags wer-
			P_2/c : I Richtung: $0 = Onrzeigersinn$	den gelöscht.
	A = A oder K (abso-		I = Gegenunrzeigersinn	
	lut/relativ)		(wenn pos. Koordinatensystem defi-	End-Position
			niert ist)	abs./relativ
			P3/p: VI End-Position/Weg der 1. Achse	
			P4/q: VI End-Position/Weg der 2. Achse	
			[unit]	
			Fahre einen Kreisbogen von	
			der akt. Pos. zur neuen Pos. 'p',	
			'q', mit einem Radius von 'r'	
			und Drehrichtung 'c'.	
	Ø		Hinweis:	
	c = 0		Ist der Kreisbogen >100° dann	
			wird alle 5° ein Punkt errech-	
	E (p/q)		net. Ist der Bogen <100° wer-	
			den immer 20 Punkte gerech-	
	c = 1		net.	
			Achtung:	
			Der Radius muss mindestens	
			die Hälfte der Distanz (bis zur	
			Endposition) betragen, anson-	
			sten wird der Befehl nicht	
			ausgeführt.	
1.15	<u>CI</u> Ra,2,''x''Ap,''y''Aq	i p	Move circle with angle (abs. / rel.)	Vorsteuern:
	~~~		(Zentrum-Modus)	Das Status-
	CIR''x'''y''A''ip''	4	Pl/a: I Winkel [unit]	Flag (8 für
			P2/c: 2 Zentrum-Modus	x-Achse)
	A = A oder R (abso-		P3/p : VI Zentr. des Kreises auf 1. Achse	wird ge-
	lut/relativ)		P4/q: VI Zentr. des Kreises auf 2. Achse	löscht.
			[unit]	
			Fahre einen Kreisbogen von	
			der akt. Pos. mit dem Winkel	
			'a' dessen Zentrum auf der Pos.	
	$\alpha = -130^{\circ}$		'p', 'q', liegt. Ist der Winkel ne-	
			gativ, dreht die Drehrichtung	
	L		des Bogens	
	Z (p/q)		Hinweis:	
			(siehe CIR-Befehl mit Radius)	

7.5.5	Befehlswort für CP <i>für FBs</i>	<b>i p</b> Mode	Kurzbezeichnung Kurzerklärung	
2.1	$\frac{FO}{FO} = x$	i	Feed Override	
		1	P1/x: I in % von 1 bis 120 führt die Bewegungsge- schwindigkeiten des ganzen Moduls in Prozenten aus. Nach PowerUp ist dieser Wert auf 100% gesetzt. Diese Funktion hat keinen Einfluss auf den 'Jog-Betrieb'. Der Wert muss vor einer Bewe- gung gewählt werden. (nicht 'on the fly')	
2.2	ENABLE "x"	1 p	Enable axis	
	ENABLE''x''	0	Durch 'Enable' der gewählten Achse wird der Lageregler eingeschaltet und die Position aktiv gehalten. Ebenso wird der Ausgang 'Ampl. Ena' (Kl. 0/8) gesetzt. Mit 'Kill' wird der Regler und der Aus- gang wieder ausgeschaltet.	
2.3	<u>K</u> ILL ''x''	i	Disable axis	
	KILL''x''	0	Mit 'Kill' wird der Regler ausgeschaltet, der Ausgang (Kl. 0/8) ausgeschaltet, der Analogausgang auf 0V gesetzt und der Programmpointer auf 0 gesetzt. Siehe auch Befehl 'Enable' In Interpolation werden alle beteiligten Achsen gekillt.	
2.4	<u>OP</u> ''x''	i	Query actual position	
	<i>QP''x''</i>	1	P1: VI Istposition [unit] Lese die aktuelle Position der gewählten Achse. Istwert der Achse. (z.B. für Anzeige auf MMI)	

#### 7.5.5 Achsensteuer-Befehle / Axis control commands

7.5.5				
2.5	<u>OPI</u> ''x''	i	Query actual position in Impulsen	
	<i>QP''x''</i>	1	P1: I +/- 2E31 (unabhängig von P96) [Imp x 4] Lese die aktuelle Position des Encoders der gewählten Ach- se. Der Istwert ist in Encoder Impulse aufgelöst. (Mode x4) + Erklärung bei 2.10.	
2.6	<u>QV</u> "x"	i	Query actual velocity	
	$QV^{\prime\prime}x^{\prime\prime}$	1	P1: VI Geschwindigkeit der Achse [unit/s] Lese aktuelle Geschwindigkeit der Achse.	
2.7	<u>QE</u> ''x''	i	Query actual position error	
	<i>QE''x''</i>	1	P1: VI Positionierfehler der Achse [unit]	
			Lese aktuellen Schleppfeh- ler/rsp. Positionierfehler im Stand.	
2.8	<u>SC</u> "x"	i p	Set capture position	Vorsteuern:
	SC''x'''ip''	0	Aktivieren der Funktion: 'Po- sition speichern', wenn der In- put 'PCI' (Kl.A/B) des Moduls angesprochen hat. Der Wert kann mit dem Befehl QC ab- gefragt werden. Das Setzen der Capture-Funktion löscht das Statusflag 'PCI erfasst'.	Flag (8 für x-Achse) wird ge- löscht
2.9	<u>QC</u> "x"	i	Query capture position	
	QC''x''	1	P1: VI Gespeicherte Position [unit] Lese den durch die Funktion 'Capture' erfassten Wert. Durch Abfrage des Statusflag (Flag 15 bei X-Achse) kann festgestellt werden, ob der Wert schon erfasst wurde. (siehe auch SC-Befehl)	

7.5.5					
2.10	<u>QCI</u> "x"	i	Query cap	oture position in Impulsen	
	QCI''x''	1	P1: VI Ges $\pm 2^3$	speicherte Position in Impulsen 1 (unabhängig von P96)	
				Lese den durch die Funktion 'Capture' erfasste Wert direkt vom Encoder. Hinweis: Ein Encoder mit 1000 Pulsen erzeugt bei einer Umdrehung 4000 Impulse im H4 Modul (im 'x 4'-Modus) (siehe auch SC- und OC-	
				Befehl)	
2.11	SP ''x'', p	ip	Set positio	)n	
	SP''x'' ''ip''	1	P1/p:	VI [unit] Position, welche als Istwert geladen wird. Max. Positionsbereich $-2^{31} + 2^{31}$ Impulse. Die aktuelle Achsposition geht verloren und wird mit der Po- sition p überschrieben.	

2.12   <u>QS ''</u> x''   i   Query Axis status	
Der Achsenstatus wird im Terminal-Mode	;
0 online angezeigt, weshalb der QS'x'-	
Befehl nicht speziell gebraucht wird.	
(Das Format ist Hex Code Dezimal)	
(Dus Format ist from Cour Delinial)	
CER EhStatHA 16 Status Elag /A chee	
Dia Elag Dasigadrassa wird im EDInitH4	
Die Flag-Dasisaulesse with hit FDinitit4	
denmert.	
Lese die Status-Flag der ent-	
sprechenden Achse.	
Flag : 0-6 nur für FB intern	
+BAF	
7: Fatal Error H4 (kein	
Link zu H4-Modul).	
Nur Lesezugriff.	
Für x-Achse gilt:	
pro Achse 8: P Achse in Pos.	
9: E Immediate-Befehl in	
Ausführung	
10: h Achse in Hardware LS	
11: s Achse in Software LS	
12: F Schleppfehler Störung	
13: W Schleppfehler Warnung	r
14:0 Soll-Geschw $= 0$	,
14. 0 Son Gesenw. – 0	
15. C Capture-1 0s. Emgenetic.	1
10. A Drive OK (linput AOK)	
1/ Neg. LS (Input LSS)	
18: + POS. LS (Input LSE)	
19: R Ref. switch (Input RPS)	
20: 1 Input capture (PCI)	
21: c Trigger-Position erreicht	
22: V Positionsüberlauf	
23: H Home ist erfolgreich	
beendet	
für Y-Achse 'Flag+16'	
für Z-Achse 'Flag+32'	
für W-Achse 'Flag+48'	
FB: Die Abfrage für die Status-	
Flag werden durch einen spe-	
ziellen FB ausgeführt. Dieser	
muss zyklisch im Programm	
aufgerufen werden.	

7.5.5					
2.13	<u>OU</u>	i	Query user error code Der User-Error wird im Terminal-Menü online angezeigt, mit QU wird diese Fehlermeldung sowie auch der User- Error-Eingang E 10 gelöscht. (auf PCD4-		
	QU	2	Bus) P1: I 16 Errorbits P2: I Errorcode	-	
			Lese das Wort 'User error code' :	L = che	gespei- rt Fehler löschen
			Störungsbit:		durch:
			0: EEPROM nicht bereit	L	
			1: EEPROM Checksum Error	L	
			2: LS angesprochen	L	
			3: (Reserviert Intern)		
			4: Max. Schleppfehler mit Stop		
			5: Errechneter Positions-Überlauf	L	ENA
			6. Max. Schleppfehler		
			7: Fehler in Home-Routine	L	ENA
			8: LS angesprochen	onli	ine
			9: Ausführungsbuf. overflow		1
			10: Falscher Befehl in Prog.	onli	ne
			Prog. Nr. siehe Bit 12-15		I
			11: Checksum Error in Prog.	L	Run 'p'
			12: 20   LSB		··· r
			13:21 Programm hat eine	L	
			14: 22   Störung		
			15: 23   MSB für Progr. Nr.		
			Störungs- Code:		
			0: keine Störung		
			1 Start Prog. mit Err. Bit 11		I
			2 Start Prog. mit Err Bit 10		
			3 mehr als 4 Prog. in RUN		
			4 Start Prog. das nicht existiert		
			5 Start Prog. auf einer nicht existie-		
			renden Zeile		
			6: Ein Prog. in Run kann nicht verän-		
			dert werden		
			7. Bewege eine Achse die disabled ist		
			8: 'Home' verlangt von einer disabled		
			Achse		
			50: Data overflow in PCD interface		
			100: Befehl von PCD unmöglich		
			200: kein H440 erkannt		
			255. GENERAL EDDOD		
			233. OENEKAL EKKÜK		

7.5.5				
2.14	<u>SO</u> ''x'',p	i p	Set output compare	Vorsteuern:
	SO''x''''ip''	1	P1/p: VI Position [unit]	Flag (21 für
				x-Achse)
			Das H4 Modul besitzt einen	wird ge-
			Output 'Trigger Out', welcher	löscht.
			beim Überschreiten, der durch	
			diesen Befehl gesetzten Posi-	
			tion, aktiviert wird. Beim Aus-	
			führen dieses Befehls wird der	
	~~~ ~ ~ ~		Output gelöscht.	
2.15	<u>SOI</u> "x",p	i p	Set output compare in impulses	Vorsteuern:
	SOTU	1	D1/n. I Desition	Das Status-
	SOI X IP	1	P1/p: 1 Position	Flag (21 lur)
			± 231 (unabilitating your P90)	x-Aclise)
			Beschreibung siehe Betehl	wird ge-
			SO. Die Position wird jedoch	löscht.
			in Impulsen angegeben.	
			Hinweis: Desebte die Encoder Auflä	
			sung wird mit 4 multipliziert	
			(siehe Kap, 6.9 Encoder)	
2 16	ΡΑΡΙΠ	i	Use rapid speed for iog	
2.10		1	Setzt die Geschwindigkeit für	
	Ranid	0	den Jog-Betrieb auf P'x'32	
	1	Ŭ	Falls die Achse bereits mit	
			'Normal speed' fährt, wird die	
			Geschwindigkeit 'on the fly'	
			mit der Beschleunigung P'x'43	
			auf Rapid geändert. 'Rapid'	
			und 'Normal' wirken auf alle	
			Achsen, jedoch können diese	
			pro Achse unterschiedliche	
			Geschwindigkeiten (P'x'31	
			und P'x'32) haben.	
2.17	<u>NO</u> RMAL	i	Use normal speed for jog	
	NORMAI	0	•	
	NORMAL	0	'Iog'-Geschwindigkeit auf	
			normal setzen (Parameter 31)	
			Zusatzinformationen siehe Be-	
			fehl 'Rapid'. Falls die Achse	
			bereits mit 'Rapid speed' fährt.	
			wird diese 'on the fly' mit	
			P'x'44 auf 'Normal' abge-	
			bremst.	

7.5.5				
2.18	<u>DR</u> IFT "x"	i	Drift compensation (Offset-Abgleich)	
	DRIFT''x''	0		
			Führt eine Drift Kompensa-	
			tion für die angewählte Achse	
			aus.	
			Addiert die Offset-Spannung,	
			welche abhängig vom Positi-	
			onsfehler im Stand und dem	
			Proportional-Faktor P'x'50 ist,	
			zum Analog-Output. Deshalb	
			muss der Integralanteil ausge-	
			schaltet werden, damit ein Po-	
			sitionsfehler auftritt und eine	
			Kompensation vorgenommen	
			werden kann.	

7.5.6 Spezial-Befehle / Special commands

	Befehlswort für CP <i>für FBs</i>	i p Mode	Kurzbezeichnung Kurzerklärung	
3.1	<u>OUT</u> ''x'',v	i	Output to DAC	
	VOUT''x''	1	 P1: VI v: ±0.00 10V Der Analogausgang, welcher im Regelkreis zur Ansteuerung des Verstärkers benötigt wird, kann mit dem Befehl 'Out' direkt angesteuert werden. Dazu muss der Regler der entsprechenden Achse ausgeschaltet sein ('Kill'). Hinweis: Dieser Befehl wird meist nur 	
			für Tests und Inbetriebsetzun-	
3.2	-	(i)	gen verwendet. Disable serial port (nur für FBs)	
	SPLOCK	0	Sperrt die Schnittstelle zu CP.	
3.3	-	(i)	Enable serial port (nur für FBs)	
	SPUNLOCK	0	Gibt die Schnittstelle zum CP wieder frei.	

	Befehlswort	i p	Kurzbezeichnung		
	für CP	Mode	Kurzerklärung		
	für FBs		~		
4.1	<u>P</u> xn=y	ip	Set parameter		
		3	x: Achse		
			(für FBs: x=1,W=4)		
			n: Parameternummer		
			y: I/VI Parameterwert (siehe Parame-		
			terliste)		
			Lade Parameter 'n' der ge-		
			wählten Achse mit dem Wert		
			'yyy'		
	<i>P''n'' (0-89,92)</i>	р	Set axis parameter in 'Program' mode	Beis	piel:
	Für H4-Prog. verwen-	2	P1: Achse	ъđ	rComH4
	den.	3	(für FBs: $x = 1,, W = 4$)	Ша	P01
			P2: Parameternummer 'n' = $0 - 89,92$	CFB :	fbExecH4 K 32
			P3: I/VI Parameterwert, (siehe Parame-		$ \begin{array}{c} R \ rr \ (1) \\ R \ rr \ (01) \end{array} $
			terliste)		R rr(0)
			Lade Parameter ('n' und P2)		
			der gewählten Achse (P1) mit		
			dem Wert aus P3		
			Hinweis:		
			Für nn muss das Befehls-		
			wort (z.B. P01) mit dem Pa-		
			rameter 2 übereinstimmen,		Beispiel:
			das heisst gleich sein.		
	<i>P''n'' (90-99,92)</i>	р	Set general paramters in 'Program'	Beis	piel:
	Für H4-Prog. verwen-	2	mode	ъđ	rComH4
	den.	3		Ша	P97
			P1: Parameternummer n=90-99	CFB :	tbExecH4 K 32
			P2: I Parameterwert (siehe Parameterliste)	Beisj Ld r F F Beisj Ld r CFB f F F F	R rr(97) R rr(45
			Lade Parameter ('n' und P2)		
			der gewählten Achse (P1) mit		
			dem Wert aus P2		
			Hinweis:		
			Für nn muss das Befehls-		
			wort (z.B. P01) mit dem Pa-		
			rameter 1 übereinstimmen,		
			das heisst gleich sein.		

7.5.7 Parameter-Befehle / Parameter commands

7.5.7				
4.2		i	Set parameter im 'Immediate' Mode	Beispiel:
	<i>P''x'''n''W</i>		P1: Parameterwert (siehe Parameterliste)	Ld rComH4 Py01W CFB fbExecH4 K 32 P rr(2)
	(n= 0-98) für allgemeine Para- meter (90-98) ohne Achse ist 'x' wegzulas- sen.	1	Lade Parameter 'n' der gewählten Achse mit dem Wert aus P1	Ld rComH4 P96W CFB fbExecH4 K32 R rr (3)
4.2	<u>P</u> xnn?	i	Get parameter	Ld rComH4 Px50R
	P''x''''nn''R	1	P1/nn: Parameterwert (Zielregister)	CFB ibExecH4 K 32 R rr
	(siehe Parameter-Liste).		Lese Parameter 'nn' der ge- wählten Achse. Siehe Para- meterliste für P1 Inhalt.	
4.3	<u>ER</u> EAD	i	Read from EEPROM	
	EREAD	0	Lese die Parameter vom EEPROM in das H4-RAM. Dies wird auch beim PowerUp durchgeführt.	
4.4	<u>EW</u> RITE	i	Store in EEPROM	
	EWRITE	0	Speichere die Parameter vom H4-RAM in das EEPROM.	
			Dies wird automatisch bei ei- nem 'Paramter Download' vom CP aus durchgeführt.	

	Befehlswort für CP	i p Mode	Kurzbezeichnung Kurzerklärung	
	für FBs			-
5.1	<u>RU</u> N p	i p	Run program	
	RUN''ip''	1	P1: I Programmnummer	
			1-9	
			Startet das ausgewählte Pro-	
			gramm auf Zeile 1.	
			Wenn der 'Run'-Befehl aus einem Pro-	
			gramm gestartet wird, muss berücksichtigt	
			werden, dass max. 4 Programme gleich-	
			zeitig laufen können (siehe auch P98).	
5.2	<u>G</u> pn	i p	Run program on line N	
	G''ip''	2	P1/p: I Programmnummer (1-9)	
	1		P2/n: I Programmzeile (1-1000)	
			Startet das ausgewählte Pro-	
			gramm auf der Zeile n.	
5.3	<u>ST</u> EP p	i	Step program	
	STEP	1	P1/n: I Programmnummer	
	~	-	(1-9)	
			Führe einen einzelnen Pro-	
			gramm-Befehl aus.	
5.4	BREAK p	i p	Break program (Abbrechen mit 'Run')	
	BREAK''ip''	1	P1/p:I Programmnummer	
	1		(1-9)	
			Stoppe das Programm nach	
			dem laufenden Befehl. (Wenn	
			mehrere Befehle 'blended'	
			ausgeführt werden, gelten die-	
			se als ein einziger Befehl).	
			Mit 'Run' läuft das Programm	
			weiter.	
5.5	<u>HA</u> LT	1	Stop all program and motion	
	HALTALL	0		
			Stoppe jegliche Bewegung so-	
			fort (alle Achsen) mit der max.	
			Verzögerung. Die Regelung	
			bleibt aktiv und die Position	
			erhalten. Dieser Befehl kann	
			nur mit dem Kommando	
			'Resume' (oder 'Kill') aufgeho-	
			ben werden.	

7.5.8 Programmsteuer-Befehle / Program control commands

5.6	<u>RE</u> SUME <i>RESUME</i>	i 0	Resume comand Halt Löst den Haltezustand des Moduls, der durch den Befehl 'HALT' eingeleitet wurde. Die durch den Halt-Befehl unter- bochene Bewegung wird zu Ende geführt.
5.7	<u>QL</u> "p" <i>QL"p"</i> ersetze "p" durch die Prog. Nummer (1-9)	i 1	Query current execution line P1: I Programmlinie (1-1000) Gibt die laufende Programm- zeile aus. Ist das Programm beendet (oder nicht gestartet worden) wird 0 zurückgege- ben.

	Befehlswort für CP	i p Mode	Kurzbezeichnung Kurzerklärung	
61	<i>fur FBs</i>	n	Starts a repeat block	
0.1		Р	Starts a repeat block	
	FOR	1	P1/n: I Schlaufenanzahl (0 - 32767) Markiert den Beginn eines Wiederholungs-Blocks. Dieser wird n-mal wiederholt. Dieser Befehl kann bis zu 8 Ebenen tief verschachtelt werden.	
6.2	<u>NE</u> XT	р	Ends a repeat block	
	NEXT	0	Markiert das Ende eines Wie- derholungs-Blocks.	
6.3	<u>G</u> O <u>T</u> O n	р	Jump to program line	
	GOTO	1	P1/n: I Programmlinie (1 - 1000) Sprung zu einer bestimmten Zeile im Programm.	
6.4	<u>G</u> O <u>S</u> UB n	р	Jump to subroutine	
	GOSUB	1	P1/n: I Programmlinie (1 - 1000) Ruft ein Unterprogramm auf Zeile n auf. Dieser Befehl kann bis zu 8 Ebenen tief ver- schachtelt werden.	
6.5	<u>R</u> E <u>T</u> URN	р	End of the subroutine	
	RETURN	0	Markiert das Ende des Unter- programms	
6.6	<u>ST</u> OP	р	Stop program	
	STOP	0	Hält das eigene Programm auf der Zeile, wo der Stop-Befehl steht an (wait endless) bis ein erneuter Befehl RUN oder STEP erfolgt. Wirkt wie ein 'Break Point'.	

7.5.9 Programmstruktur-Befehle / Program structure commands

6.7	<u>W</u> AI <u>T</u> WAIT	p 1	Wait P1/n: I Wartezeit 0 - 65535 [msec] Führt beim Abarbeiten des Programms eine Pause der Grösse n in msec. aus. Hinweis: Durch Einfügen eines WAIT 0 zwischen zwei Bewegungsbe- fehlen, wird die 'Blended mo- ve'-Funktion unterdrückt.	
6.8	END	р	Identifies the end of program	
	END	0	Jedes Programm im H4 muss	
			mit diesem Befehl enden.	

	Befehlswort für CP	i p Mode	Kurzbezeichnung Kurzerklärung	
	für FBs		0	
7.1	<u>L</u> pn=	i	Function of list: Set programline	
			Überschreibe die Zeile n des Programms p mit den nachfol- genden Befehlszeichen.	
			Das Programm wird erst beim 'Close'-Befehl abgespeichert.	
			Für FBs siehe 'OPEN'	
7.2	Lpn?	i	Function of list: Get programline	
			Anzeige der Zeile n des Pro- gramms p in Befehlszeichen.	
7.3	<u>L</u> pn,m?	i	Function of list: Get area of program- line	
			Anzeige der Zeile n bis m (max. 20 Zeilen) des Pro- gramms p in Befehlszeichen.	

7.5.10 Programm List-Funktionen für Terminal (nur für CP) Program list commands

	Befehlswort	i p	Kurzbezeichnung	
	für CP	Mode	Kurzerklärung	
	für FBs			
8.1		i	Open program for edit	Beispiel:
	OPEN''p''	1	P1: I Programmlinie (1 - 1000)	Ld rComH4 OPEN5
	ersetze "p" durch die Prog. Nummer (1-9).		(1 1000)	CFB fbExecH4 K 32 R rr(1)
			Öffnet das gewählte Pro-	
			gramm, um anschliessend Be- fehle ins Programm zu schrei-	
			ben.	
			Hinweis: Dies geschieht im CP automa-	
			tisch mit dem Lpn = Befehl	
			und benötigt daher für das CP	
			keme spez. Instruktion.	
8.2	<u>CL</u> OSE	i	Close and save program under edit	
	CLOSE	0		
			Schliesse das geöffnete Pro- gramm und speichere dieses	
			gramm and spetenere dieses.	
			Wird auch benötigt, wenn mit	
			fiziert wurde. Ist das editierte	
			Programm in Ausführung, wird der Close-Befehl nicht	
			ausgeführt.	
8.3	<u> </u>	i	Erase program	
	EP	1	P1/p: I Programmnummer	
			(1-9)	
			Losche das gewählte Pro- gramm. Ist dieses Programm	
			in Ausführung, wird das Lö-	
			schen nicht durchgeführt. Sie- he auch Bits in 'User Error'	
			në dden Dhë më ëser Error .	

7.5.11 Programm-Erstellungsbefehle / Program build commands

8.4	<u>E</u> pn	i	Erase program line	
	-	2	 p: Programmnummer (1-9) n: Programmlinie (1-1000) Lösche eine Zeile im gewählten Programm. Die gelöscht Zeile bleibt leer, die nachfolgenden rücken nicht nach. Dieser Befehl kann mit den FB nicht ausgeführt werden. 	
8.5	<u>E</u> pn,m	i	Erase area of program line	
	-	3	 p: Programmnummer (1 - 9) n: Programmzeile Beginn (1 - 1000) m: Programmzeile Ende (n - 1000) Lösche einen Bereich von Zeilen n bis m im gewählten Programm. Dieser Befehl kann mit den FB nicht ausgeführt werden. 	
8.6	<u>QM</u>	i	Query memory lines free	
	QM	1	 P1: I Anzahl freie Programmlinien (0 - 1000) Abfrage, wieviel Programm- zeilen im Editierbuffer noch frei sind. P2: I Freier Speicher im H4-Modul in Worten (max. ca. 11K Worte, was ca. 3000 4000 Programmzeilen entspricht) je nach verwendeten Be- fehlen 	
7.6. Parameterliste

7.6.1 Modul Parameter (generell)

In der folgenden Liste verwendete Abkürzungen:

E	=	Basis-Einheit	
S	=	Sekunde	(siehe auch die Syntaxerläuterungen
V	=	Volt	im Abschnitt 7.5.1)
mV	=	Millivolt	

Para. Nr	Bezeichnung	Einheit	changed on the fly	default	For- mat	Werte :	ip- Mode
94	Modul Type	-		2 4	Ι	2: für H420 4: für H440	i
95	Programmnummer, welche mit den Eingägnen 'Start' & 'Stop' ausgelöst werden.	-		1	Ι	1-9: für Pro- gramm-Nummer	i
96	Anzahl Nachkommas; nur für VI-Werte via FBs	-		3	Ι	0-6: Anzahl Nachkommas	i
90	Flanke des 'Start' Signals, auf welche das Programm ge- startet wird	-		Positv	Ι	0: Positiv 1: Negativ	i
91	Flanke des 'Stop' Signals, auf welche das Programm ge- stoppt wird	-		Positv	Ι	0: Positiv 1: Negativ	i
92	Encoder Spannung mit P'x'92 werden X und Y eingestellt, mit p'z'92 die beiden Achsen Z und W.	-		5V	Ι	0: 5V 1: 24V	i
97	Winkel, ab welchem Blended move nicht mehr ausgeführt wird.	-Grad		0°	Ι	0-181°	i
98	Kontrolle ob mehrere Pro- gramme auf eine Achse zu- greifen	-		1		0: keine Kontrolle 1: Kontrolle	i

Wenn P98 = 1 (Check aktiv), wird verhindert, dass mehrere Programme, welche auf die gleiche Achse wirken, gleichzeitig laufen. Der Run-Befehl für das 2. Programm wird nicht akzeptiert und die Fehlermeldung 'Axis locked' erscheint.

Wenn mehrere Programme parallel laufen sollen und Bewegungsbefehle für eine gemeinsame Achse enthalten, muss der Check ausgeschaltet werden (P98 = 0). Der Anwender ist dann für die Synchronisation der Programme verantwortlich.

ip-Mode: ip nur 'Immediate' (nicht in Programm verwendbar) ip 'Immediate' + 'Programm'-Mode

Para. Nr pro Achse	Bezeichnung	Einheit	change on the fly	default	For- mat	Werte :	ip- Mo- de
01	Achs-Einheit (E)	E		mm	Ι	0: mm 1: inch 2: grad 3: Impuls	i
02	Encoder Impulse/Umdrehung	-		1000		065535	i
03	Weg/Encoder-Umdrehung (in Einheiten gemäss P01)	E		5	VI	7-stellig 0- 100'000	i
04	Zählrichtung Encoder	-		positiv	Ι	0: positiv 1: negativ	i
08	Analogausgang Polarität	-		positiv	Ι	0: positiv 1: negativ	i
30	Maximale Geschwindigkeit (bei $V_{out} = 10V$)	E/s		200	VI	7-stellig 0-150kHz*P03/P02	ip
33	Maximale Beschleunigung (positiv & negativ)	E/s2		1000	VI	7-stellig 0 - 1'000'000	ip
40	Positive Wegbegrenzung Softwarelimit *)	Е	ja	0	VI	7-stellig $\pm 2^{31}$ Schritte 0 = keine Grenze	ip
41	Negative Wegbegrenzung Softwarelimit *)	E	ja	0	VI	7-stellig $\pm 2^{31}$ Schritte 0 = keine Grenze	ip
11	Schleppfehler- Grenze Störungssignal	E	ja	2	VI	7-stellig 0 - 8192*P03/P02	ip
12	Schleppfehler- Grenze Warnungssignal	E	ja	0,5	VI	7-stellig 0 - 8192*P03/P02	ip
13	Verhalten der Achse bei Schleppfehler Störungssignal	-	ja	Stop	Ι	0: kein Stop 1: Stop	ip

7.6.2 Maschinen Parameter

*) Wird kein Softwarelimit benutzt, müssen <u>beide</u> Grenzen auf Null gesetzt werden, damit die Funktion ausgeschaltet ist.

Achtung: Die Softwarelimits sind relativ, d.h. wenn der Positionswert verändert wird (Zero'x' oder SetPos'x') verschieben sich auch die Softwarelimits.

Die 'Home'-Funktion (Ref.-Position anfahren) behandelt die Software-LS gleich wie die Hardware-LS. Falls sich der Referenzschalter ausserhalb der Software-LS befindet, müssen diese für die 'Home'-Funktion ausgeschaltet werden.

Para. Nr pro Achse	Bezeichnung	Einheit	changed on the fly	default	For- mat	Werte :	ip- Mode
31	Jog Geschwindigkeit (normal)	E/s	ja	20	VI	7-stellig 0 - P30 *)	ip
32	Jog Geschwindigkeit (rapid)	E/s	ja	40	VI	7-stellig 0 - P30 *)	ip
22	Referenzschalter Such- Ge- schwindigkeit	E/s		20	VI	7-stellig 0 - P30 *)	ip
24	Encoder C-Signal Such- Ge- schwindigkeit	E/s		10	VI	7-stellig 0 - P30 *)	ip
20	Referenzschalter Such- Richtung	-		positiv	Ι	0: positiv 1: negativ	ip
21	Referenzschalter Freifahr- richtung	-		positiv	Ι	0: positiv 1: negativ	ip
23	Achspositionswert nach Re- ferenzfahren (Preset) (Referenzposition)	E		0	VI	7-stellig $\pm 2^{31}$ Schritte	ip

7.6.3 Jog und Referenzfahren

*) Die Jog- und Referenzfahrtgeschwindigkeiten werden nicht PID geregelt, sondern nur gesteuert.

Die Steuerspannung wird wie folgt berechnet:

 $U_{out} = 10V *$ _____

max. Geschwindigkeit

Deshalb ist es wichtig, vorgängig die max. Geschwindigkeit P 'x' 30 zu definieren.

Die max. Steuerspannung wird erreicht, wenn die Beschleunigungsrampe beendet ist (abhängig von P'x'43).

7.6.4 Regel Paramete

Para. Nr pro Achse	Bezeichnung	Einheit	ch. on the fly	default	For- mat	Werte :	ip- Mode
50	Kp Regler Proportionalfaktor	V/E	ja	1	VI	0- 40*P02/P03	ip
51	Kd Regler Differenzialfaktor	DA- Step/Zyk lus/ Impuse	ja	0	VI		ip
56	Sampling time des Kd	Servo- zyklen	ja	100	Ι	1-1000	ip
52	Ki Regler Integralfaktor	DAStep/ Impul- se/Zyklu s	ja	0	VI		ip
53	Integration Limit des Ki (Anti-windup- protec.)	V	ja	2	VI	0-10	ip
16	Intergral Mode Der Regler benutzt den Integralfaktor nur gemäss Einstellung	-	ja	immer	Ι	0: immer 1: nur im Stillstand	ip
54	Geschwindigkeit Auf- schaltung (feedforward)	mV/E/s	ja	0	VI	0 - 15000/P30	ip
55	Beschleunigungs Auf- schaltung (feedforward)	mV/E/s2	ja	0	VI	0 - 10000/P33	ip
10	Totzone	E	ja	0	VI	7-stellig 0 - 2^{31} Schritte	ip
14	Umkehrspiel	E	?	0	0	0 - 8192 0 - 8192*P03/P02	ip
63	Umkehrspiel Korrektur- geschwindigkeit	%	?	10	Ι	10-100	ip
15	In-Position-Zone (für 'in-position'-Flag)	E	ja	0,2	VI		ip

Para. Nr pro Achse	Bezeichnung	Einheit	changed on the fly	default	For- mat	Werte :	ip- Mode
42	Beschleunigungs Mode (bei Interpolationen wird für alle Achsen die weichste Form verwendet)	-		Trapez	Ι	0: Trapez 1: S-Kurve	ip
43	Beschleunigung (bei Interpolationen wird die tiefste aller Achsen verwen- det)	E/s2	ja	100	VI	0- P33	ip
44	Verzögerung/Abbremsung (bei Interpolationen wird die tiefste aller Achsen verwen- det)	E/s2	ja	100	VI	0- P33	ip
45	Dauer der S-Kurven- Be- schleunigung	S		0	VI	0-99.99	ip

7.6.5 Beschleunigungs Parameter

Para. Nr pro Achse	Bezeichnung	Einheit	changed on the fly	default	For- mat	Werte :	ip- Mode
05	Kreisachse (Überlaufposition)	Е		0	VI	0: Linear > 0 - 9999.999	ip
06	Elektronik-Getriebe (Koppelt die ausgewählte Achse an die Master-Achse) Hinweis: Die Kopplung gilt nur von der Slave-Achse zur Master- Achse, jedoch nicht umge- kehrt. Soll beides erreicht werden, muss P06 auch bei der Slave-Achse eingestellt werden.	-		0	Ι	0: keine Kupplung 1: koppelt X an 2: koppelt Y an 3: koppelt Z an 4: koppelt W an	ip
07	Übersetzung des Elektronik- getriebes (Slave-/Master-Achse)	-		0	VI	0 - 9999.9999	ip

7.6.6 Achsmode Parameter

Para. Nr pro Achse	Bezeichnung	Einheit	changed on the fly	default	For- mat	Werte :	ip- Mode
62	Polarität des 'Trigger-	-	ja	0	Ι	0: positiv	ip
	Output'-Signals					1: negativ	

7.6.7 Spezielle Parameter

7.7. H4 Programme mit FBs schreiben und lesen

Beschreibung

Das H4-Modul kann bis zu 9 Programme verwalten. Diese Programme sind im H4 durch einen Superkondensator gepuffert. Liegt das Modul länger als zwei Wochen nicht an Spannung, kann das Anwenderprogramm verändert sein. Durch die Funktionen 'Upload' und 'Download' können die Programme aus dem H4 in der PCD gespeichert und wieder geschrieben werden.

Die graphische Darstellung der FBs ist in Abschnitt 7.4.6 erklärt.

FbUpLdH4	Funktion: - H4-F	Programm lesen	FbUpLdH4
	Ld R rHelp 3 Ld R rComH4 P96W CFB fbExecH4 ModulBase rHelp NotUsed NotUsed NotUsed	; z.B.3 Nac ; Die Anz welcher speicher gängig g aus P96 speicher	chkommastellen zahl Nachkommastellen mit das Programm im DB ge- t werden soll, muss vor- gesetzt werden. Der Wert wird im DB ebenfalls ge- t.
ModulBase ——— H4 Prog. Num. ———	- =1 - =2	FbUpLdH4	
Destinations DB	FB Levels	2 Ja	H4-Modul
	Verarbeitungszeit	Belastung der CPU : * 1)	Bemerkung *1): ca. 30ms/H4-Prog.Linie / CPU-Prog.Zyklus im
	Benutzt NCOB Ändert P96-Param	Ja Ja, nicht ver- ändern, wenn FB läuft	Exended Memory Hinweis: abhängig von der CPU Leistung und Linienlänge.

Diese Funktion liest ein Programm des H4-Moduls und speichert es in der PCD-CPU in einem DB. Detailfunktionen siehe nächste Seite.

Beschreibung In	puts und	Outputs:
------------------------	----------	-----------------

Symbol	Beschreibung	Para-		Media	
		meter			
			Тур	Format	Adr-Bereich
ModulBasic	Modul Basisadresse	Ja	Κ	Integer	0 - 496
H4-Prog.Num.	Programmnummer im H4	Ja	Κ	Integer	1 -9
Destination DB	Ziel / Speicher DB	Ja	DB	Integer	(0 -) 4000-
				_	7999 *2)

Bemerkung *2):

Vorzugsweise nur DB >4000 verwenden, da der Zugriff auf den DB schneller und die DB auch grösser sein können. DB >4000 befinden sich im Extended Memory, benötigen also ein PCD7.R3.. Memory-Modul.

Das gelesene H4-Programm wird in einem einzigen DB abgelegt. Dieser DB muss durch den Anwender definiert werden (Grösse siehe Berechnung). Wird dieser zu klein definiert, so wird der Upload abgebrochen und das Error-Flag gesetzt. Dieser DB kann somit nicht ins H4 geladen werden.

Während ein Upload- oder Download-FB arbeitet, können alle Immediate-Befehle weiterhin aufgerufen werden. So können zum Beispiel die Statusflags oder die aktuelle Position einer Achse in einem andern COB weiterhin gelesen werden.

Alle Befehle, welche auf den Programmspeicher des H4-Moduls zugreifen, dürfen nicht aufgerufen werden.

Der FbUpldH4 wird erst beendet, wenn das ganze H4-Programm in den DB geladen ist. Der FB verwendet den Next-COB-Befehl, womit in einem weiteren COB auch andere Aufgaben behandelt werden.

DB-Aufbau:

Berechnung der DB-Grösse: (Annäherung)

DB-Grösse = Anzahl H4-Programm-Zeilen * 9

Beispiel:

Ein Programm habe 120 Zeilen:

: DB 3600 [120*9] ;(max.16384) :

Diese Funktion schreibt ein Programm in das H4-Modul. Das Programm wird aus einem DB der PCD geholt. Detailfunktionen siehe nächste Seite.

Beschreibung Inputs und Outputs:

Symbol	Beschreibung	Para-		Media	
		meter		_	
			Туре	Format	Adr-Bereich
ModulBasic	Modul Basisadresse	Ja	Κ	Integer	0 -512
H4-Prog.Num.	Programmnummer im H4	Ja	Κ	Integer	1 -9
Source DB	Quell DB	Ja	DB	Integer	(0 -) 4000-
					7999 *2)

Bemerkung *2):

Vorzugsweise nur DB >4000 verwenden, da der Zugriff auf den DB schneller und die DB auch grösser sein können. DB >4000 befinden sich im Extended Memory, benötigen also ein PCD7.R3.. Memory-Modul.

Während ein Upload- oder Download-FB arbeitet, können alle Immediate-Befehle weiterhin aufgerufen werden. So können zum Beispiel die Statusflags oder die aktuelle Position einer Achse weiterhin gelesen werden. Alle Befehle, welche auf den Programmspeicher des H4-Moduls zugreifen, dürfen nicht aufgerufen werden.

Hat das Programm aus dem DB keinen Platz im H4, wird der Download abgebrochen und kein Programm ins H4 geschrieben und die CPU in 'Halt' gebracht..

Der FbUpldH4 wird erst beendet, wenn das ganze H4-Programm in den DB geladen ist. Der FB verwendet den Next-COB-Befehl, womit in einem weiteren COB auch andere Aufgaben behandelt werden.

8. Fehler-Behandlung / Vorbeugung

8.1 Installation

Um Positionierungsfehlern in stark gestörter Umgebung vorzubeugen, sind die nachfolgend aufgelisteten Punkt zu beachten:

- Das PCD-System ist sauber zu erden. Es ist eine kurze Verbindung von der Erdungsklemme der PCD (GND) zur Erdschiene zu legen.
- Es sind zwischen dem H4, den Encodern und den Leistungsverstärkern abgeschirmte Leitungen einzusetzen und die Abschirmung ist beidseitig zu erden. Maximale Länge = 20m.
- Es sind ganzmetall D-Typ Stecker zu verwenden. (Abschirmung am Steckergehäuse).
- Sind zwischen der PCD4-Masse und der Masse der Maschine Potentialdiffernzen vorhanden, ist die Abschirmung maschinenseitig über ein paralleles RC-Filter anzuschliessen.
- Die H4-Leitungen (für Encoder und DAC-Ausgang) dürfen nicht parallel zu Leistungskabel für Motoren, Schützen, Schweissmaschinen usw. verlaufen.
- Es sind Leistungsverstärker mit differentiellen Eingängen einzusetzen (Spannung ~ Geschwindigkeit)

8.2 Checkliste zur Fehlersuche

- 1. Ist die 24V-Speisung des PCD4-Systems sauber geerdet?
- 2. Ist das H4-Modul mit einer **geglätteten** Gleichspannung 19 bis 32V gespeist?
- 3. Ist die Verdrahtung der Achsen korrekt:
 - arbeiten die Endschalter / Referenzschalter richtig? Negative Logik (siehe LEDs am H4)
 - arbeiten die Encoder? (vom H4 gespeist)
- 4. Die allgemeinen Parameter sind korrekt zu setzen
- 5. Wurde der richtige Encodertyp gewählt? 5V/24V (siehe LEDs A, B, C am H4)
- 6. Die Maschinen-Parameter sind korrekt zu setzen (max. Geschwindigkeit, max. Beschleunigung, Encoderauflösung, mm/Auflösung, Schleppfehler, Folgeaktion = Stop usw.)
- 7. Stimmt die Zählrichtung? (Achse von Hand bewegen oder mit den Jog-Befehlen für kleine Geschwindigkeit)
- 8. Ist die Zählposition korrekt? (QP'x')
- 9. Setzen der Parameter für Jog-Betrieb (nicht PID-geregelt)
- 10. Leistungsverstärker einschalten (mit einer Hand am Notaus-Schalter)
- 11. Freigeben der Achsen des H4 ENA'x' (mit einer Hand am Notaus-Schalter).Ist das OK Signal vom Verstörker gekommen?

Ist das OK-Signal vom Verstärker gekommen? (siehe LED 'IN' am H4)

- 12. Ist die DAC-Polarität korrekt? (Positiver Jog-Befehl bewegt die Achse in die positive Richtung)
- 13. Parameter für die Home-Routine setzen. (Einstellungen für Geschwindigkeit, Richtung und der Homeposition)
- 14. Ausführen des Home-Befehls. Ist die Position korrekt?
- 15. Ausführen eines Bewegungs-Befehls, z.B. R10 (PID-geregelt)
- 16. Ermitteln der optimalen Regelparameter mittels einem kleinen Bewegungsprogramm (im Grafikmodus)
- 17. Abspeichern der optimalen Parameter in das EEPROM mittels EW (EPROM Write)

Fehlersuche

Falls sich die Achse nicht bewegen sollte, ist der Achsenstatus im Terminalmenü zu überprüfen und der Status der Flags mit der Tabelle 2.12 im Abschnitt 7.5.5 zu vergleichen.

Führt das H4 die Befehle nicht aus, ist der Error-Code zu überprüfen und mit der Tabelle 2.13 im Abschnitt 7.5.5 zu vergleichen.

Kommt keine Verbindung zwischen dem CP (Commissioning / Programming tool) und dem H4 zustande (Kommunikationsfehler) ist folgendes zu prüfen:

- ist die richtige COM-Schnittstelle gewählt?
- hat die PCD den Ausgang RESET DSP (BA+11) nicht gesetzt?
- läuft das H4 (OK-LED hell)?
- ist das richtige Kabel eingesetzt?

8.3 Fehlerbehandlung mit FB

In den Standard-FBs befindet sich keine Struktur, welche eine Maschine bei einer Störung des H4-Moduls stoppt oder ausser Betrieb setzt. Dies muss der Anwender spezifisch für seine Maschine oder Anlage überlegen und lösen. Die Standard-FBs unterstützen jedoch den Anwender und lassen ihm trotzdem die grösstmögliche Freiheit zur Lösungsfindung.

Es werden zwei verschiedene Störungen unterschieden: "Fatal Error"-Störung und "User Error"-Störung.

Verhalten der FBs bei User Error:

Ein "User Error" wird durch das H4-Modul erzeugt. Die FBs funktionieren weiterhin. Der Anwender erkennt ein "User Error" anhand des Zustandes des Eingangs I 10 des H4-Moduls (siehe dazu Abschnitt 7.4.2). Durch das Aufrufen des FB 'fbExecH4' mit dem Befehl 'QU' erhält der Anwender detailliertere Informationen über den "User Error". Die Auswertung des "Error code" ist in Abschnitt 7.5.5 Zelle 2.13 beschrieben. Anhand dieser Informationen kann er dann das Verhalten seiner Maschine oder Anlage programmieren.

Fatal Error

Die "Fatal Error"-Störung (F7 + Flag BA, siehe Abschnitt 7.5.5 Zelle 2.12) wird durch den FB 'StatH4' erzeugt, welcher zyklisch aufgerufen werden muss. Erst wenn es unmöglich ist, das H4-Modul anzusprechen oder dieses falsch reagiert, wird diese Störung gesetzt. Dies kann vorkommen, wenn das H4-Modul defekt ist oder wenn ein Fehler auf dem PCD-Bus vorliegt. Bei einer falschen Adressierung des H4-Modul kann ebenfalls ein "Fatal Error" auftreten, da das Modul nicht anspricht und dadurch das Verhalten auf dem Bus falsch ist.

Das 'Fatal Error'-Flag kann durch den Anwender nicht gelöscht werden. Es würde auch wenig Sinn ergeben, wenn ein defektes Modul durch einfache Quittierung weiter betrieben werden könnte.

Verhalten der FBs bei Fatal Error:

FB 'fbExecH4':

Dieser FB wird nicht mehr ausgeführt. Die Vorsteuerung der Flags werden jedoch weiterhin behandelt. Entsteht ein "Fatal Error" während der Arbeit des FBs mit dem Modul, wird der FB über einen Timeout verlassen, dabei wird das 'Fatal Error'-Flag jedoch nicht gesetzt. (Die Timeout-Zeit von ca. 200 ms ist fix und wird ohne Timer erzeugt).

FB 'fbStatH4':

Erkennt dieser FB einen "Fatal Error", wird das 'Fatal Error Flag' gesetzt. Nur dieser FB kann das 'Fatal Error-Flag 7' der Statusflags setzen. Weitere Zugriffe auf das H4-Modul sind gesperrt. Die Zustände der Statusflags sind nicht mehr aktuell und werden nicht mehr verändert.

FB 'fbInitH4':

Tritt ein "Fatal Error" bereits beim Aufruf des Initial-FBs auf, wird ein QIO-Fehler erzeugt (XOB 5) und die PCD-CPU blockiert. Dies tritt zum Beispiel bei fehlendem H4-Modul auf. Ein Weiterarbeiten ist nicht möglich.

FB 'fbUpLdH4':

Der Upload Fb wird abgebrochen und der Ziel DB wird ungültig. Ein gültiger DB liegt vor, wenn im DB selbst das zweite Element (Nr. 1) ungleich 0 (Null) ist.

FB 'fbDnLdH4':

Der Download wird abgebrochen. Das angewählte Programm im H4-Modul wird nicht verändert.

Beispiel mit Erklärungen zu verschiedenen Situationen:

9. Anwendungsbeispiele

9.1 Verfahren eines einfachen Weges

9.1.1 Beispiel

Für dieses Beispiel ist lediglich eine Achse (X) nötig. Das Beispiel zeigt, wie ein einfacher Bewegungsablauf erstellt werden kann. Es werden die beiden Varianten, Steuerung durch H4-Ablaufprogramm oder Steuerung durch PCD-Programm gegenübergestellt.

Es wird angenommen, dass die SAIA-Tools (PG3 oder PG 4) bereits auf Ihrem PC installiert sind. Ausserdem muss das CP-Tool für H4 installiert werden. Für die Installation und Bedienung siehe Abschnitt 7.3 'Programmierung mit CP-Tool'.

b) Einrichten

Richten Sie die Achse X betriebsbereit ein. Siehe Kapitel 5 für die elektrischen Anschlüsse und Abschnitt 8.2 "Checkliste". Sie benötigen eine PCD4 Steuerung mit einer CPU M1.., ein Speichermodul R..., ein Positioniermodul PCD4.H4.., ein Netzteil PCD4.N210 und Busmodule. Eine zweite Achse wird für dieses Beispiel nicht benötigt.

Die Achse sollte in der Ausgangposition so stehen, dass eine Bewegung von 120 mm ausgeführt werden kann ohne die Limit-Switches zu überfahren.

9.1.2 Variante mit CP-Tool

Die Programmierung über das CP-Tool ist die einfachste Möglichkeit. Sie benötigen dazu kein PCD-Programm und keine PCD4-CPU. Stellen Sie zuerst die Parameter des H4-Moduls entsprechend der verwendeten Achse ein. Siehe Abschnitt 7.6 'Parameterliste'.

Achtung:

Stellen Sie die Encoderspannung (Parameter 92) richtig auf 5V oder 24V ein.

Der Parameter 30 muss entsprechend der maximal möglichen Geschwindigkeit der verwendeten Achse eingestellt werden.

Stellen Sie die Parameter für Zählrichtung und DAC polaritätsrichtig ein, ansonst die Achse unkontrolliert beschleunigen kann.

a) Programmierung

Anschliessend geben Sie diese Befehle im Programm-Editor des CP-Tools ein. Sie erstellen somit Ihr erstes H4-Programm. (Zum Eingeben der Befehle muss immer zuerst mit <CR> das Eingabefenster geöffnet werden).

```
ZEROX
SSX,40
XR40
WAIT1000
SSX,80
XR80
WAIT1000
XA0
END
```

Übertragen Sie das Programm als Programm Nr.1 ins H4-Modul (F4: From/To H4mod). Falls ein Kommunikationsfehler angezeigt wird, überprüfen Sie das Kabel, das im CP-Tool gewählte COM-Port und die Versorgungsspannung der PCD. (Das Programm ist bereits im CP-Tool unter Example 1 gespeichert)

b) Betrieb

Schalten Sie die X Achse ein und starten Sie das Programm. Geben Sie dazu folgende Befehle im Terminalmode des CP ein:

ENABLEX RUN1

9.1.3 Variante mit PCD Programm.

Das Programm wird in GRAFTEC programmiert.

a) Programmierung

XOB 16				
XOB	16	;Kaltstart		
CFB	fbInitH4 K 0 0 K 2	H ;H4-Modul initialisieren ;Basisadresse ;Basis Flags ;Modultyp 2 Achsen		
LD	RHelp 0			
LD	rComH4 P96w			
CFB	fbExecH4 K 0 RHelp NotUsed NotUsed NotUsed	Ł		
EXOB				
COB 0				
СОВ	0 0	;Zyklischer Block		
CFB	fbStatH4 K 0 0	l ;Lesen Status H4 ;Basisadresse ;Lesen Zyklisch		
CSB	0	;Call SB		
ECOB				

b) Betrieb

Nach dem Eingeben und Laden des Programms, kann dieses gestartet werden. Es wird der gleiche Bewegungsablauf wie die Variante mit CP-Tool ausgeführt. Der Ablauf wird allerdings zyklisch wiederholt.

Beachten Sie die fettgedruckten Befehle und deren Analogie zum vorangehenden Beispiel.

9.2 Anwendungsbeispiel mit Kreisinterpolation

Dieses Beispiel beschreibt das Arbeiten mit der Linear - und Zirkularinterpolation.

Für das Einrichten der Achsen und das Installieren der Software gelten dieselben Angaben wie im Beispiel 9.1. Es sind jedoch zwei Achsen vorgesehen. Die Eingaben erfolgen mit dem CP-Tool.

Aufgabenstellung:

Das folgende Bewegungsprogramm soll ausgeführt werden:

Die momentane Achsposition wird als Nullpunkt definiert. Die Bewegung soll von diesem Punkt aus eine Linearinterpolation mit einer Bahngeschwindigkeit von 20mm/s starten. Danach wird, mit 80mm/s eine Kreisbahn 10 mal abgefahren. Die Bewegung erfolgt im Uhrzeigersinn.

Variante 1:

Dieselbe Aufgabe, jedoch mit Kreisbahn im Gegenuhrzeigersinn und endloser Wiederholung.

Variante 2:

Ursprüngliche Aufgabenstellung aber Kreis mit Centermode programmiert. Hinzu kommt, dass ohne "Blended move" zwischen den beiden Interpolationen verfahren werden soll.

Programm: Example 2

Achse X Nullen
Achse Y Nullen
Bahngeschwindigkeit = 20mm/s
Bewegung relativ auf 20,60mm
Verhindert "Blended move"
Bahngeschwindigkeit = 80mm/s
Start 10x Schlaufe
Halbkreis Im Uhrzeigersinn mit Radius 40
und Ziel +80
Halbkreis Im Uhrzeigersinn mit Radius 40
Ende Schlaufe
Ende Programm

mit Variante 1: Example 3

Die Unterschiede zum ursprünglichen Programm sind fett gedruckt und unterstrichen.

ZEROX	Achse X Nullen
ZEROY	Achse Y Nullen
SV20	Bahngeschwindigkeit = 20mm/s
XR20,YR60	Bewegung relativ auf 20,60mm
WAIT0	Verhindert "Blended move"
SV80	Bahngeschwindigkeit = 80mm/s
FOR O	Start Endlos-Schlaufe
CIR40, 1 ,XR80,YR0	Halbkreis im Gegenuhrzeigersinn mit Ra-
-	dius 40
CIR40, 1 ,XR-80,YR0	Halbkreis im Gegenuhrzeigersinn mit Ra-
-	dius 40
NEXT	Ende Schlaufe
END	Ende Programm

mit Variante 2: Example 4

Die Unterschiede zum ursprünglichen Programm sind fett gedruckt und unterstrichen.

*)	ZEROX ZEROY SV20 XR20,YR60 WAIT0 SV80 FOR <u>0</u> CIR <u>360</u> , <u>2</u> ,XR40,YR0	Achse X Nullen Achse Y Nullen Bahngeschwindigkeit = 20mm/s Bewegung relativ auf 20,60mm Verhindert "Blended move" Bahngeschwindigkeit = 80mm/s Start Endlos-Schlaufe 360° Kreis mit Angabe des Zentrums
	for <u>0</u> Cir 360 , 2 , xr40, yr0 next end	Start Endlos-Schlaufe 360° Kreis mit Angabe des Zentrums Ende Schlaufe Ende Programm
	END	Ende Programm

*) Ohne diese Anweisung wird "Blended move" ausgeführt. Siehe auch Skizze mit Detail und Abschnitt 6.6.

9.3 Anwendungsbeispiel Drehautomat

Das Beispiel beschreibt eine einfache Drehmaschine. Die Maschine referenziert beim Einschalten die Achsen automatisch. An einem Bedienpult können die beiden Betriebsarten 'Manuell' und 'Automatik' gewählt werden. Im manuellen Mode kann die Spindel ein- und ausgeschaltet, die Achsen vor- und zurückgefahren werden. Der Automatik-Mode startet Programme aus dem H4.

Folgende Hardware ist dazu notwendig:

- PCD4.M1.. CPU
- PCD7.R... RAM-Speicher
- PCD4.E1.. Eingangsmodul (BA 0)
- PCD4.A4.. Ausgangsmodul (BA 16)
- PCD4.N210 Netzteil
- PCD4.C1.. CPU-Busmodul
- PCD4.C2.. I/O-Busmodul
- PCD4.H4.. Achsmodul (BA 32)
- Schalterbox mit minimal 12 Schaltern
- Achsmodell: Zwei Achsen mit Inkrementalgebern, Referenzschalter und zwei Endschaltern

Folgende Software ist dazu notwendig:

- SAIA 'PG3' Assembler komplett mit Editor
- Commissioning Tool CP.EXE für H4-Modul
- Standard-Funktionsblöcke von SAIA mit Definitionsdatei H4FB.SRC, H4EXTN.DEF und H4DEF.SRC

Source-Code für Anwendungsbeispiel:

- DREHDEF.INC
- DREH_SB.SRC
- DREH_MP.SRC

Skizze der Drehmaschine

Beschreibung der Funktion, welche in der Datei 'Dreh_xx.SRC' implementiert ist.

Nach dem Einschalten der Drehmaschine wird der Home Befehl ausgeführt. Sobald die Achsen referenziert sind, ist die Maschine betriebsbereit. Es kann zwischen den beiden Betriebsarten 'Einrichten' und 'Automatik' gewählt werden. Beim 'Einrichten' können die Achsen mit den Richtungstasten verfahren werden. Mit der Starttaste kann, in dieser Betriebsart, der Spindelantrieb eingeschaltet und mit der Austaste wieder ausgeschaltet werden. Wird der Automatikbetrieb gewählt, kann über dieselbe Starttaste ein H4-Programm gestartet werden. Die Starttaste leuchtet solange, wie dieses Programm läuft.

Mittels eines Codierschalters kann eine Programmnummer (1-9) gewählt werden, wobei diese vor dem Betätigen der Starttaste eingestellt werden muss. Diese Programme sind im H4 hinterlegt und können mit dem "Commissioning Tool" verändert werden. Die PCD-CPU ist nur für den Start der H4-Programme zuständig.

Wird am Codierschalter die "0" gewählt, so läuft nicht ein H4-Programm, sondern die PCD-CPU generiert einen Ablauf, in dem mit den FBs jede einzelne Bewegung als 'Immediate'-Befehl ans H4-Modul übertragen wird. Das H4-Modul führt diese Befehle unmittelbar aus, d.h: der Bewegungsablauf ist nicht im H4 sonder in der PCD-CPU hinterlegt.

Installation des Anwendungsbeispiels:

Die Eingänge der Bedienelemente werden mit einer Schalterbox simuliert. Die verwendeten E/A-Adressen sind in der Datei DREHDEF.INC definiert.

Der Zustand der Ausgänge kann auf dem A400-Modul beobachtet werden.

PCD Grundstruktur für Drehmaschine:

```
;================
;Drehmaschine
;============
;-----
;Einbinden der Definitionen
;-----
$INCLUDE
            DREHDEF.SRC
$INCLUDE
            H4EXTN.DEF
;-----
;Kaltstart
;-----
XOB 16
CFB fbInitH4 ; Init H4
     oAchsH4 ; Base Adress Module
fStatus ; Base Statusflags
K_2 ; Moduletype
EXOB
_____
Zyklus / Monitoring
COB
    0
     0
COM 0 255 ; auffrischen des Watchdog
     fbStatH4 ; Read Status H4
CFB
     oAchsH4 ; Base address of H4
0 ; 0 = pro Zyklus eine Achse
CSB
            ;Call Basis-Ablaufstruktur der Drehm.
    0
ECOB
;-----
;Einbinden der SAIA-Standard FBs für H4 Modul
;-----
$INCLUDE
            H4FB.SRC
;----- Ende Source-Code -----
```

Ablauf der Drehmaschine in SB 0

Basis-Ablaufstruktur

Synchronisierung:

Betriebsmode Manuell

9.4 Anwendungsbeispiel mit unabhängigen Achsen (mit OPEN/CLOSE Funktion)

Dieses Beispiel beschreibt das Arbeiten mit unabhängigen Achsen, welche gleichzeitig rsp. überlappend aber nicht interpoliert verfahren werden sollen.

Zu diesem Zweck muss für jede Achse ein Programm geschrieben werden. Die Programme können anschliessend unabhängig voneinander (immediate) oder abhängig voneinander (verschachtelter Programmstart innerhalb eines Programmes) gestartet werden.

Mit den FBs werden die Befehle OPEN und CLOSE zum Erstellen eines Programmes verwendet:

LD	R 0	
	K 1	; Zeilen Nr. ab welcher das Programm editiert wird
LD	rComH4	
	OPEN5	; Programm 5 wird zum editieren geöffnet ; (auf Zeile 1)
CFB	fbExeH4	; Execute Command
	K 0	; Basisadresse des H4
	R 0	; Zeilen Nr.
	R 1	; nicht verwendet für diesen Befehl
	R 2	. " 2
	R 3	· "
LD	R 0	
	K 20000	; entspricht 20 bei $P96 = 3$
LD	rComH4	; XA20 wird in Programm 5 auf Zeile 1 geschrieben
	ХАр	; das p bezeichnet den P rogrammbefehl
	Ĩ	; Xai würde unmittelbar (immediate) ausgeführt
		; und nicht in den Programmspeicher geschrieben
CFB	fbExeH4	; Execute Command
	K 0	; Basisadresse
	R 0	; nicht verwendet für diesen Befehl
	R 1	
	R 2	
	R 3	, II ,
LD	rComH4	; END wird auf Zeile 2 geschrieben
	END	; (END existiert nur als Programmbefehl und muss
		; nicht speziell mit einem p gekennzeichnet werden)

CFB	fbExeH4	; Execute Command		
	K 0	; Basisadresse		
	R 0	; nicht verwendet für diesen Befehl		
	R 1	. " 2		
	R 2	. " 2		
	R 3	. " 2		
LD	rComH4	; Mit CLOSE wird das editierte Programm in dem		
	CLOSE	; Speicherplatz 5 abgespeichert		
CFB	fbExeH4	; Execute Command		
	K 0	; Basisadresse		
	R 0	; nicht verwendet für diesen Befehl		
	R 1	. " 2		
	R 2	. " 2		
	R 3	. II 2		

Befindet sich das editierte Programm in Ausführung, wird der CLOSE Befehl nicht akzeptiert (Störungs-Code 6) und das Programm nicht überschrieben.

Ansonsten wird im Programmspeicher Nr. 5 folgendes Programm stehen:

1 - XA20 2 - END

Es werden nur die editierten Zeilen überschrieben. Soll ein längeres Programm überschrieben werden, muss dieses vor dem CLOSE mit dem Befehl EP (erase program) gelöscht werden. Notizen

;

Anhang A: Kommandocode-Definitionen für die Programmierung mit FBs

```
;-------
; Kommandocode-Definitionen für FBs Version V001
;-----
:
; Alle Codes sind im Hex-Format und werden vor der
; Verwendung ins Register 'rComH4' (BAR+0) geladen.
; Dieses Register ist im Debugger im Hex-Format
; anzuzeigen
;
;motion commands
;-----
            EQU 0A0010000h
EQU 0A0020000h
                                   ;Zero X immediate
ZeroXi
ZeroYi
                                   ;Zero Y immediate
              EQU
                    0A0030000h
ZeroZi
                                   ;Zero Z immediate
                    0A0040000h
ZeroWi
              EQU
                                    ;Zero W immediate
                     0C0010000h
ZeroXp
              EOU
                                    ;Zero X program
                     0C0020000h
ZeroYp
              EOU
                                    ;Zero Y program
                     0C0030000h
                                    ;Zero Z program
ZeroZp
              EQU
ZeroWp
              EQU
                     0C0040000h
                                    ;Zero W program
HomeX
              EQU
                     0A0055100h
                                    ;Home X
HomeY
              EQU
                     0A0065200h
                                    ;Home Y
HomeZ
              EQU
                     0A0075400h
                                    ;Home Z
                     0A0085800h
HomeW
              EQU
                                    ;Home W
              EQU
                     0A0090000h
                                    ;Select Jog Rapid speed
Rapid
                     0A08F0000h
                                    ;Select Jog Normal speed
Normal
              EQU
              EQU
                     0A00A0000h
                                    ;Jog + on X
JUpX
                                    ;Jog - on X
                     0A00B0000h
JdnX
              EQU
JSX
                     0A00C0000h
                                    ;Jog Stop on X
              EQU
                     0A10A0000h
JUpY
              EQU
                                    ;Jog + on Y
JDnY
                     0A10B0000h
                                    ;Jog - on Y
              EQU
JSY
                     0A10C0000h
                                    ;Jog Stop on Y
              EQU
JUpZ
              EQU
                     0A20A0000h
                                    ;Jog + on Z
JDnZ
              EQU
                     0A20B0000h
                                    ;Jog - on Z
JSZ
              EQU
                     0A20C0000h
                                    ;Jog Stop on Z
JUpW
              EQU
                     0A30A0000h
                                    ;Jog + on W
JDnW
              EQU
                     0A30B0000h
                                    ;Jog - on W
JSW
                     0A30C0000h
              EQU
                                    ;Jog Stop on W
                     0200E0003h
              EOU
QPX
                                    ;Read (Query) Position of X
                     0210E0003h
QPY
              EQU
                                    ;Read (Query) Position of Y
                     0220E0003h
QPZ
              EQU
                                    ;Read (Query) Position of Z
QPW
              EQU
                     0230E0003h
                                    ;Read (Query) Position of W
                    0200F0002h
                                    ;Read Status of X Axis
QSX
              EQU
                     0210F0002h
                                    ;Read Status of Y Axis
QSY
              EQU
                     0220F0002h
                                    ;Read Status of Z Axis
QSZ
              EQU
QSW
              EQU
                     0230F0002h
                                    ;Read Status of W Axis
```

QVX	EQU	020100003h	;Read actual Velocity X
QVY	EQU	021100003h	;Read actual Velocity Y
ovz	EOU	022100003h	Read actual Velocity Z
QVW	EQU	023100003h	Read actual Velocity W
-	-		· ·
QEX	EQU	020110003h	;Read actual Pos.error X
OEY	EOU	021110003h	Read actual Pos.error Y
~ OFZ	EOII	022110003b	:Read actual Pos error 7
OEW	EOU	023110003h	Read actual Pos.error W
~	-2-		,
SSXi	EQU	0A0120003h	;Set motion Speed of X
SSYi	EQU	0A0130003h	;Set motion Speed of Y
SSZi	EQU	0A0140003h	;Set motion Speed of Z
SSWi	EQU	0A0150003h	;Set motion Speed of W
SSXp	EQU	0C0120003h	;Set motion Speed of X
SSYp	EQU	0C0130003h	;Set motion Speed of Y
SSZp	EQU	0C0140003h	;Set motion Speed of Z
SSWp	EQU	0C0150003h	;Set motion Speed of W
SPXi	EQU	0A0480003h	;Set actual Position X
SPYi	EQU	0A0490003h	;Set actual Position Y
SPZi	EQU	0A04A0003h	;Set actual Position Z
SPWi	EQU	0A04B0003h	;Set actual Position W
	_		
SPXp	EQU	0C0480003h	;Set actual Position X
SPYp	EQU	0C0490003h	;Set actual Position Y
SPZp	EQU	0C04A0003h	;Set actual Position Z
SPWp	EQU	0C04B0003h	;Set actual Position W
a		0.0.1 0.0.0.24	
SVI	ЕÕO	0A0160003H	;Set vector motion speed
SAi	EQU	0A0170003h	;Set motion acceleration
SDi	EQU	0A0180003h	;Set motion deceleration
SVp	FOII	0C0160003h	Set Vector motion Speed
SAD	FOIL	0C0170003b	Set motion acceleration
0D-	EQU	000180003h	, Set motion acceleration
SDP	ЕÕO	00018000311	jset motion decereration
XAi	EQU	0A01E1103h	;Move X Absolute
YAi	EOU	0A01F1203h	;Move Y Absolute
7Ai	EOU	0A0201403h	Move 7 Absolute
WAi	EQU	0A0211803h	;Move W Absolute
	-		-
XAp	EQU	0C01E0003h	;Move X Absolute
YAp	EQU	0C01F0003h	;Move Y Absolute
ZAp	EOU	0C020003h	;Move Z Absolute
WAp	EQU	0C0210003h	;Move W Absolute
•	_		
XYAi	EQU	0A028130Fh	;Move X,Y Absolute
XZAİ	EQU	0A029150Fh	;Move X,Z Absolute
XWAi	EQU	0A02A190Fh	;Move X,W Absolute
YZAİ	EQU	0A02B160Fh	;Move Y,Z Absolute
YWAi	EOU	0A02C3A0Fh	Move Y,W Absolute
ZWAi	EQU	0A02D3C0Fh	;Move Z,W Absolute
XYAp	EQU	0C028000Fh	;Move X,Y Absolute
хZAр	EQU	0C029000Fh	;Move X,Z Absolute
XWAp	EQU	0C02A000Fh	;Move X,W Absolute
YZAp	EQU	0C02B000Fh	;Move Y,Z Absolute
YWAp	EQU	0C02C000Fh	;Move Y,W Absolute
ZWAp	EQU	0C02D000Fh	;Move Z,W Absolute
VV77 -	ROII	0 x 0 2 <i>4</i> 1 7 2 2 b	Morro X X 7 Abgoluto
---------	------	---------------------------------------	------------------------
A12A1	EQU		MOVE X, 1, 2 ADSOLUCE
YZWA1	EQU	0A0361E3Fh	;Move Y,Z,W Absolute
XZWAİ	EQU	0A0901D3Fh	;Move X,Z,W Absolute
XYWAI	EOU	0A0351B3Fh	:Move X.Y.W Absolute
	-2-		,
XYZAp	EOU	0C034003Fh	Move X,Y,Z Absolute
VZWAD	FOU	0C036003Eb	Move X 7 W Absolute
12WAD	EQU	00030003F11	Move 1,2,W Absolute
XZWAp	EQU	0C090003Fh	;Move X,Z,W Absolute
XYWAp	EQU	0C035003Fh	;Move X,Y,W Absolute
XYZWAİ	EQU	0A03A1FFFh	;Move X,Y,Z,W Absolute
XYZWAp	EQU	0C03A00FFh	;Move X,Y,Z,W Absolute
XRI	EQU	0A0221103h	;Move X relative
YRİ	EQU	0A0231203h	;Move Y relative
ZRi	FOU	0A0241403h	:Move 7 relative
WB -		0302519025	Move W relative
WKI	ЕÕO	0A025180311	Move w relative
YPn	FOII	0002200035	Move X relative
XKP	EQ0	00022000511	
YRP	EQU	0C0230003h	;Move Y relative
ZRp	EQU	0C0240003h	;Move Z relative
WRp	EQU	0C0250003h	;Move W relative
XYRİ	EQU	0A02E130Fh	;Move X,Y relative
XZRİ	EOU	0A02F150Fh	;Move X,Z relative
YWDi		02030190Fb	Move X W relative
	100		Move X/W relative
YZRI	EQU	UAU31160Fh	;Move 1,2 relative
YWRI	EQU	0A0321A0Fh	;Move Y,W relative
ZWRİ	EQU	0A0331C0Fh	;Move Z,W relative
XYRp	EQU	0C02E000Fh	;Move X,Y relative
XZRp	EQU	0C02F000Fh	;Move X,Z relative
XWRp	EOU	0C030000Fh	:Move X.W relative
VZPp		0C031000Eb	Move X 7 relative
	EQU		Move 1,2 relative
IMRD	EQU	0C032000Fh	;Move Y,W relative
ZWRp	EQU	0C033000Fh	;Move Z,W relative
•			··· ··· · · · ·
XYZRI	EQU	0A037173Fh	;Move X,Y,Z relative
YZWRİ	EQU	0A0391E3Fh	;Move Y,Z,W relative
XZWRİ	EOU	0A0911D3Fh	Move X,Z,W relative
XYWRi	EOII	0A0381B3Fh	Move X.V.W relative
AIMAL	ПÕO	OROSOIDSPIL	Move Ayryw relative
XYZRp	EQU	0C037003Fh	Move X,Y,Z relative
VZWPp		0003900355	Move V 7 W relative
	EQ0	00039003711	
XZWRP	EQU	00091003Fh	;Move X,Z,W relative
XYWRp	EQU	0C038003Fh	;Move X,Y,W relative
XYZWRI	EQU	0A03B1FFFh	;Move X,Y,Z,W relative
			·· ·· ·· · ·
XYZWRp	EQU	0C03B00FFh	;Move X,Y,Z,W relative
		0304012-7	
CITXYRI	EQU	UAU4213F7h	;Circle X,Y relative
CirXZRi	EQU	0A04315F7h	;Circle X,Z relative
CirXWRi	EQU	0A04419F7h	;Circle X,W relative
CirYZRi	EOU	0A04516F7h	Circle X,W relative
CirvWPi	EOU	0204612575	·Circle V W relative
	11QU	0204016001 (11	dimale R M relative
CITZWRI	чõn	UAU4/ICF/N	JUITCIE Z,W TELATIVE

CirXYRp	EQU	0C04200F7h	;Circle X,Y relative
CirXZRp	EQU	0C04300F7h	;Circle X,Z relative
CirXWRp	EQU	0C04400F7h	;Circle X,W relative
CirYZRp	EQU	0C04500F7h	;Circle X,W relative
CirYWRp	EQU	0C04600F7h	;Circle Y,W relative
CirZWRp	EOU	0C04700F7h	Circle Z.W relative
CIIIIMAP	750	0001/001/11	
CirXVAi	FOII	0A03C13E7b	·Circle X X absolute
CirVZAi	FOU	0203015876	Circle X 7 absolute
	EQU	0203510571	dingle X W absolute
CIIAWAI Gimyyzai	EQU		Circle X,W absolute
	EQU		Circle X,W absolute
CIFYWAI	EQU		;Circle Y,W absolute
CITZWAI	EQU	0A0411CF7h	;Circle Z,W absolute
a !		0 - 0 0	
CirXYAp	EQU	0C03C00F7h	;Circle X,Y absolute
CirXZAp	EQU	0C03D00F7h	;Circle X,Z absolute
CirXWAp	EQU	0C03E00F7h	;Circle X,W absolute
CirYZAp	EQU	0C03F00F7h	;Circle X,W absolute
CirYWAp	EQU	0C04000F7h	;Circle Y,W absolute
CirZWAp	EQU	0C04100F7h	;Circle Z,W absolute
;Program Control	l Comman	nds	
;			
END	EQU	0C05D0000h	;End of Programm
FOR	EOU	0C05E0002h	Beginn Loop
NEXT	EOU	0C05F0000h	End Loop
GOTO	FOIL	000600002b	
COSUB	FOIL	0C0610002h	.Tump to Subroutine
DETIIDN	EQU	0C0620000b	Find of Subroutino
ATONN CTORN	EQU	00002000011	
510P	EQU	00063000011	Stop Programm
WALT	ЕÕO	0C0640002n	;walt
DIBL	TIOU	0000100011	
RUNP	EQU	000810001H	; Run Program
BREAKp	EQU	0C0820001h	;Break Program
Gp	EQU	0C0880009h	;Set program execution pointer to line
_		_	
;System Control	Command	ls	
;			
; FO	EQU	 0A0500002h	;Set Feed Override (0-120%)
; FO	EQU	 0A0500002h	;Set Feed Override (0-120%)
;FO DriftX	EQU EQU	 0A0500002h 0A0510000h	;Set Feed Override (0-120%) ;Execute drift compensation X
;FO DriftX DriftY	EQU EQU EQU	 0A0500002h 0A0510000h 0A1510000h	;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y
; FO DriftX DriftY DriftZ	EQU EQU EQU EQU	 0A0500002h 0A0510000h 0A1510000h 0A2510000h	;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z
; FO DriftX DriftY DriftZ DriftW	EQU EQU EQU EQU EQU	 0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h	;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W
; FO DriftX DriftY DriftZ DriftW	EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h	;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W
;FO DriftX DriftY DriftZ DriftW OPIX	EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W ;Ouery Position X in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX OPIY	EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Ouery Position Y in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ	EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Ouery Position Z in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ OPIW	EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 022930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Y ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIY QPIZ QPIW	EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIY QPIZ QPIW	EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU	EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Read User-Error information</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU	EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Read User-Error information :Read Execution Line Program 1</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 OL2	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h 02092000Ah 0218B0002h 0228B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Pead Execution Line Program 1</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 QL2 OL 2	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 02092000Ah 0218B0002h 0228B0002h 0228B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 2 ;Read Execution Line Program 2;</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 QL2 QL3 OL4	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 02092000Ah 0218B0002h 0238B0002h 0238B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 3</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIY QPIZ QPIW QU QL1 QL2 QL3 QL4 QL4	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 02092000Ah 0218B0002h 0238B0002h 0238B0002h 0248B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 4</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 QL2 QL3 QL4 QL5	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 02092000Ah 0218B0002h 0238B0002h 0238B0002h 0248B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 4 ;Read Execution Line Program 5</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIY QPIZ QPIW QU QL1 QL2 QL3 QL4 QL5 QL6	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h 02092000Ah 0218B0002h 0238B0002h 0248B0002h 0258B0002h 0258B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 4 ;Read Execution Line Program 5 ;Read Execution Line Program 6</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 QL2 QL3 QL4 QL5 QL6 QL7	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h 02092000Ah 0218B0002h 0238B0002h 0248B0002h 0258B0002h 0258B0002h 0268B0002h 0278B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 4 ;Read Execution Line Program 4 ;Read Execution Line Program 5 ;Read Execution Line Program 6 ;Read Execution Line Program 7</pre>
;FO DriftX DriftY DriftZ DriftW QPIX QPIX QPIZ QPIZ QPIW QU QL1 QL2 QL3 QL4 QL5 QL6 QL7 QL8	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0A0500002h 0A0510000h 0A1510000h 0A2510000h 0A3510000h 020930003h 021930003h 022930003h 023930003h 023930003h 0238B0002h 0238B0002h 0248B0002h 0258B0002h 0268B0002h 0268B0002h 0278B0002h 0278B0002h	<pre>;Set Feed Override (0-120%) ;Execute drift compensation X ;Execute drift compensation Z ;Execute drift compensation W ;Query Position X in Pulses ;Query Position Y in Pulses ;Query Position Z in Pulses ;Query Position W in Pulses ;Query Position W in Pulses ;Read User-Error information ;Read Execution Line Program 1 ;Read Execution Line Program 3 ;Read Execution Line Program 4 ;Read Execution Line Program 5 ;Read Execution Line Program 6 ;Read Execution Line Program 7 ;Read Execution Line Program 7 ;Read Execution Line Program 8</pre>

KILLX	EQU	0A0520000h	;Kill X
KILLY	EQU	0A0530000h	;Kill Y
KTT.T.7	FOIL	020540000b	•Kill 7
	EQU	0205500001	
KILLW	ЕÕO	0A0550000n	;KIII W
ENAXi	EQU	0A0560000h	;Enable X
ENAYi	EOU	0A0570000h	:Enable Y
ENAZ		020590000b	Function 7
ENAGI	EQU	0A058000011	
ENAW1	EQU	0A0590000h	;Enable W
ENAXp	EQU	0C0560000h	;Enable X
ENAYD	EOU	0C0570000h	:Enable Y
ENAZD	EOU	000580000	Enable 7
ENAME	EQU	000500000	Enable W
ыммр	ЕÕO	00059000011	;Enable W
VOUTX	EQU	0A05A0003h	;Output Voltage X
VOUTY	EOU	0A15A0003h	;Output Voltage Y
VOIITZ	FOIL	02520003b	Output Voltage 7
	EQU	025200051	Output Voltage Z
VOUTW	ЕÕO	0A35A0003n	;Output Voltage w
SPLOCK	EQU	0A05B0000h	;Lock serial port
SPUNLOCK	EQU	0A05C0000h	;Unlock serial Port
EREAD	FOU	0A0650000h	Read EEPROM
EWDITE	FOU	030660000h	Write FEDROM
EWKIIE	ЕÕO	0A088000011	;WIILE EEPROM
scxi	FOII	0A0678100b	Set Capture function X
govi		020688200b	Set Capture function V
	EQU	00000020011	, Set Capture function f
SCZI	EQU	0A0698400H	;Set Capture function 2
SCWI	EQU	0A06A8800h	;Set Capture function W
SCXp	EOU	0C0670000h	;Set Capture function X
SCVD		000680000b	Set Capture function V
	EQU	000000000h	det Capture function 7
sczp	FÕO	0006900001	set capture function Z
SCWP	EQU	0C06A0000h	;Set Capture function W
QCX	EQU	0208D0003h	;Query Capture Position X
OCY	FOU	0218D0003h	Ouery Capture Position Y
	FOU	0228000026	Query Capture Degition 7
	EQU	02280000311	
QCW	EQU	0238D0003h	;Query Capture Position W
QCIX	EQU	020940003h	;Query Capture Position X in Pulses
OCIY	EOU	021940003h	Ouery Capture Position Y in Pulses
	EOU	022940003h	Ouery Capture Position 7 in Pulses
OCIW	EOU	023940003h	:Ouery Capture Position W in Pulses
	~~~		
SOXi	EQU	0A06B2103h	;Set Output Compare X
soyi	EOU	0A06C2203h	:Set Output Compare Y
2071	FOU	0306D2403b	Sot Output Compare 7
5021	EQU	0A06D240311	Set Output Compare 2
SOWI	ЕÕO	0A06E2803N	;set Output Compare w
SOXp	EQU	0C06B0003h	;Set Output Compare X
SOYp	EOU	0C06C0003h	;Set Output Compare Y
SOZD	EOU	000600035	·Set Output Compare 7
SOND	EQU	00060000000	Act Output Compare M
SOWP	ЕÕO	000000030	;set Output Compare W
SOIXi	EQU	0A0702103h	;Set Output Compare X in Pulses
SOIYi	EOU	0A0712203h	;Set Output Compare Y in Pulses
SOIZI	EOU	0A0722403h	:Set Output Compare 7 in Pulses
SOTW		0207328022	Set Output Compare W in Dulces
DOTHT .	υyu	0401250021	Pac ouchar compare w III LAISes

SOIXp	EQU	0C070003h	;Set Output Compare X in Pulses
SOIYp	EQU	0C0710003h	;Set Output Compare Y in Pulses
SOIZp	EQU	0C0720003h	;Set Output Compare Z in Pulses
SOIWp	EQU	0C0730003h	;Set Output Compare W in Pulses
STEP	EQU	0A0800001h	;Execution a single instruction
RUNi	EQU	0A0810001h	;Execute program
BREAKi	EQU	0A0820001h	;Break Program
HALTALL	EQU	0A0830000h	;Stop program and hold position
RESUME	EQU	0A0840000h	;Resume all program simulatneously
EP	EQU	0A0850001h	;Erase program (all line)
Gi	EQU	0A0880009h	;Set program execution pointer to line
QM	EQU	02086000Ah	;Query free memory
OPEN1	EQU	0E0010002h	;Open Program 1 for Edit
OPEN2	EQU	0E0020002h	;Open Program 2 for Edit
OPEN3	EQU	0E0030002h	;Open Program 3 for Edit
OPEN4	EQU	0E0040002h	;Open Program 4 for Edit
OPEN5	EQU	0E0050002h	;Open Program 5 for Edit
OPEN6	EQU	0E0060002h	;Open Program 6 for Edit
OPEN7	EQU	0E0070002h	;Open Program 7 for Edit
OPEN8	EQU	0E0080002h	;Open Program 8 for Edit
OPEN9	EQU	0E0090002h	;Open Program 9 for Edit
CLOSE	EQU	0A0870000h	;Close and save program under edit
;			

;General parameter to read from the modul

;							
P90r	EQU	005A0001h	;Parameter	90	Read		
P91r	EQU	005B0001h	;Parameter	91	Read		
Px92r	EQU	005C0001h	;Parameter	92	Read	on	х
Pz92r	EQU	025C0001h	;Parameter	92	Read	on	Z
P94r	EQU	005E0001h	;Parameter	94	Read		
P95r	EQU	005F0001h	;Parameter	95	Read		
P96r	EQU	0060001h	;Parameter	96	Read		
P97r	EQU	00610001h	;Parameter	97	Read		
P98r	EQU	00620001h	;Parameter	98	Read		

;General parameter to write to the modul

;							
P90w	EQU	805A0001h	;Parameter	90	Write		
P91w	EQU	805B0001h	;Parameter	91	Write		
Px92w	EQU	805C0001h	;Parameter	92	Write	on	х
Pz92w	EQU	825C0001h	;Parameter	92	Write	on	$\mathbf{Z}$
P94w	EQU	805E0001h	;Parameter	94	Write		
P95w	EQU	805F0001h	;Parameter	95	Write		
P96w	EQU	8060001h	;Parameter	96	Write		
P97w	EQU	80610001h	;Parameter	97	Write		
P98w	EQU	80620001h	;Parameter	98	Write		

;Parameter to	write or	h Axis 'X'		
PX01w	EQU	80010001h	;Parameter	1 Write on X
PX02w	EQU	80020002h	;Parameter	2 Write on X
PX03w	EQU	80030003h	;Parameter	3 Write on X
PX04w	EQU	80040001h	;Parameter	4 Write on X
PX05w	EQU	80050003h	;Parameter	5 Write on X
PX06w	EOU	80060001h	;Parameter	6 Write on X
PX07w	EOU	80070003h	;Parameter	7 Write on X
PX08w	EQU	80080001h	;Parameter	8 Write on X
PX10w	EQU	800A0003h	;Parameter	10 Write on X
PX11w	EQU	800B0003h	;Parameter	11 Write on X
PX12w	EQU	800C0003h	;Parameter	12 Write on X
PX13w	EQU	800D0001h	;Parameter	13 Write on X
PX14w	EQU	800E0003h	;Parameter	14 Write on X
PX15w	EQU	800F0003h	;Parameter	15 Write on X
PX16w	EQU	80100001h	;Parameter	16 Write on X
PX20w	EQU	80140001h	;Parameter	20 Write on X
PX21w	EQU	80150001h	;Parameter	21 Write on X
PX22w	EQU	80160003h	;Parameter	22 Write on X
PX23w	EQU	80170003h	;Parameter	23 Write on X
PX24w	EQU	80180003h	;Parameter	24 Write on X
PX30w	EQU	801E0003h	;Parameter	30 Write on X
PX31w	EQU	801F0003h	;Parameter	31 Write on X
PX32w	EQU	8020003h	;Parameter	32 Write on X
PX33w	EQU	80210003h	;Parameter	33 Write on X
PX40w	EQU	80280003h	;Parameter	40 Write on X
PX41w	EQU	80290003h	;Parameter	41 Write on X
PX42w	EQU	802A0001h	;Parameter	42 Write on X
PX43w	EQU	802B0003h	;Parameter	43 Write on X
PX44w	EQU	802C0003h	;Parameter	44 Write on X
PX45w	EQU	802D0003h	;Parameter	45 Write on X
PX50w	EQU	80320003h	;Parameter	50 Write on X
PX51w	EQU	80330003h	;Parameter	51 Write on X
PX52w	EQU	80340003h	;Parameter	52 Write on X
PX53w	EQU	80350003h	;Parameter	53 Write on X
PX54w	EQU	80360003h	;Parameter	54 Write on X
PX55w	EQU	80370003h	;Parameter	55 Write on X
PX56w	EQU	80380002h	;Parameter	56 Read on X
PX62w	EQU	803E0001h	;Parameter	62 Write on X
PX63w	EQU	803F0001h	;Parameter	63 Write on X
;Parameter to	read on	Axis 'X'		
;	 EOU	00010001b	•Darameter	1 Read on Y
DX02r	EQU EQU	000200025	·Darameter	2 Read on V
PX021	EQU EQU	0002000211	·Parameter	2 Read on V
DY04r	EQU EQU	0003000311	, Farameter	4 Dead on V
PX05r	EQU EQU	000400011	·Parameter	5 Read on V
PX06r	EQU EQU	0005000311	, Farameter	6 Dead on V
PX07r	EQU EQU	000700025	·Parameter	7 Read on V
Px08r	FOIL	000800015	·Parameter	8 Read on Y
	-20	000000111	, a a ane cer	

PX10r	EQU	000A0003h	;Parameter	10	Read	on	х		
PX11r	EQU	000B0003h	;Parameter	11	Read	on	х		
PX12r	EQU	000C0003h	;Parameter	12	Read	on	х		
PX13r	EQU	000D0001h	;Parameter	13	Read	on	х		
PX14r	EQU	000E0003h	;Parameter	14	Read	on	х		
PX15r	EOU	000F0003h	;Parameter	15	Read	on	х		
PX16r	EOU	00100001h	;Parameter	16	Read	on	х		
	~								
PX20r	EOU	00140001h	;Parameter	20	Read	on	х		
PX21r	EOU	00150001h	;Parameter	21	Read	on	х		
PX22r	EOU	00160003h	;Parameter	22	Read	on	x		
PX23r	EOU	00170003h	;Parameter	23	Read	on	х		
PX24r	EOU	00180003h	;Parameter	24	Read	on	x		
	~					-			
PX30r	EOU	001E0003h	;Parameter	30	Read	on	х		
PX31r	EOU	001F0003h	;Parameter	31	Read	on	x		
PX32r	EOU	00200003h	;Parameter	32	Read	on	х		
PX33r	EOU	00210003h	;Parameter	33	Read	on	x		
	-2-		,						
PX40r	EOU	00280003h	;Parameter	40	Read	on	х		
PX41r	EOU	00290003h	:Parameter	41	Read	on	x		
PX42r	EOU	002A0001h	;Parameter	42	Read	on	x		
PX43r	EOU	002B0003h	;Parameter	43	Read	on	x		
PX44r	EOU	002C0003h	;Parameter	44	Read	on	x		
PX45r	EOU	002D0003h	;Parameter	45	Read	on	x		
	-2-		,						
PX50r	EOU	00320003h	;Parameter	50	Read	on	х		
PX51r	EOU	00330003h	:Parameter	51	Read	on	x		
PX52r	EOU	00340003h	;Parameter	52	Read	on	x		
PX53r	EOU	00350003h	:Parameter	53	Read	on	x		
PX54r	EOU	00360003h	:Parameter	54	Read	on	x		
PX55r	EOU	00370003h	:Parameter	55	Read	on	x		
PX56r	EOU	00380002h	:Parameter	56	Read	on	x		
	-2-		,						
PX62r	EOU	003E0001h	:Parameter	62	Read	on	x		
PX63r	EOU	003F0001h	;Parameter	63	Read	on	x		
	~					-			
;Parameter Write	e to Prog	gram for X							
;									
PX10	EQU	0C0A0000Dh	;Parameter	10	Writ	ce-I	Prog	on	х
PX11	EQU	0C0A0000Dh	;Parameter	11	. Writ	ce-I	Prog	on	х
PX12	EQU	0C0A0000Dh	;Parameter	12	Writ	ce-I	Prog	on	х
PX13	EQU	0C0A00005h	;Parameter	13	Writ	ce-I	Prog	on	х
PX14	EQU	0C0A0000Dh	;Parameter	14	Writ	ce-I	Prog	on	х
PX15	EQU	0C0A0000Dh	;Parameter	15	Writ	ce-I	Prog	on	х
PX16	EQU	0C0A00005h	;Parameter	16	Writ	ce-I	Prog	on	х
PX20	EQU	0C0A00005h	;Parameter	20	Writ	ce-I	Prog	on	х
PX21	EQU	0C0A00005h	;Parameter	21	. Writ	ce-I	Prog	on	х
PX22	EQU	0C0A0000Dh	;Parameter	22	Writ	ce-I	Prog	on	х
PX23	EQU	0C0A0000Dh	;Parameter	23	Writ	ce-I	Prog	on	х
PX24	EQU	0C0A0000Dh	;Parameter	24	Writ	ce-I	Prog	on	х
							-		
PX30	EQU	0C0A0000Dh	;Parameter	30	Writ	ce-I	Prog	on	х
PX31	EQU	0C0A0000Dh	;Parameter	31	. Writ	ce-I	Prog	on	х
PX32	EQU	0C0A0000Dh	;Parameter	32	Writ	ce-I	Prog	on	х
PX33	EQU	0C0A0000Dh	;Parameter	33	Writ	ce-I	Prog	on	х

PX40	EQU	0C0A0000Dh	;Parameter 40 Write-Prog on X
PX41	EQU	0C0A0000Dh	;Parameter 41 Write-Prog on X
PX42	EQU	0C0A00005h	;Parameter 42 Write-Prog on X
PX43	EQU	0C0A000Dh	;Parameter 43 Write-Prog on X
PX44	EQU	0C0A000Dh	;Parameter 44 Write-Prog on X
PX45	EQU	0C0A0000Dh	;Parameter 45 Write-Prog on X
PX50	EQU	0C0A0000Dh	;Parameter 50 Write-Prog on X
PX51	EQU	0C0A0000Dh	;Parameter 51 Write-Prog on X
PX52	EQU	0C0A0000Dh	;Parameter 52 Write-Prog on X
PX53	EQU	0C0A0000Dh	;Parameter 53 Write-Prog on X
PX54	EQU	0C0A0000Dh	;Parameter 54 Write-Prog on X
PX55	EQU	0C0A0000Dh	;Parameter 55 Write-Prog on X
PX56	EQU	0C0A00009h	;Parameter 56 Write-Prog on X
PX62	EQU	0C0A00005h	;Parameter 62 Write-Prog on X
PX63	EQU	0C0A00005h	;Parameter 63 Write-Prog on X
; Note: The ; for ; ;	codes for p axis X, on	parameters on a ly the two firs	xis Y, Z and W are the same as t numbers are changed
;Parameter t	to write on	Axis 'Y'	
/ PY01w	EOU	81010001h	Parameter 1 Write on Y
PY02w	EOU	81020002h	Parameter 2 Write on Y
PY03w	EOU	81030003h	Parameter 3 Write on Y
PY04w	EOU	81040001h	Parameter 4 Write on Y
•••	220	0101000111	
•••• PY63w	EQU	813F0001h	;Parameter 63 Write on Y
;Parameter t	co read on 2	Axis 'Y'	
;			
PY01r	EQU	01010001h	;Parameter 1 Read on Y
PY02r	EQU	01020002h	;Parameter 2 Read on Y
PY03r	EQU	01030003h	;Parameter 3 Read on Y
PY04r	EQU	01040001h	;Parameter 4 Read on Y
•••			
PY63r	EQU	013F0001h	;Parameter 63 Read on Y
;Parameter W	Write to Pro	ogram for Y	
;			
PYI0	EQU	UCUALUOUDh	Parameter 10 Write-Prog on Y
PY11	EQU	0C0A1000Dh	;Parameter 11 Write-Prog on Y
PY12	EQU	0C0A1000Dh	;Parameter 12 Write-Prog on Y
PY13	EQU	0C0A10005h	;Parameter 13 Write-Prog on Y
• • •			
•••		0 0 0 1 0 0 0 5 1	
PY63	EQU	0C0A10005h	;Parameter 63 Write-Prog on Y
;Parameter t	co write on	Axis 'Z'	
, PZ01w	EOI1	82010001h	Parameter 1 Write on 7
P7.02w	EOII	82020002h	Parameter 2 Write on 7
PZ03w	EOII	82030003h	Parameter 3 Write on 7
PZ04w	EOII	82040001h	Parameter 4 Write on 7
•••	-20	010 1000 III	, 142 and 12 1 11 200 011 2
•••			
PZ63w	EQU	823F0001h	;Parameter 63 Write on Z

;Parameter to read on Axis 'Z'

PCD4.H4..

PZ02r	EQU	02020002h	;Parameter 2 Read on Z
PZ03r	EQU	02030003h	;Parameter 3 Read on Z
PZ04r	EQU	02040001h	;Parameter 4 Read on Z
•••			
• • •			
PZ63r	EQU	023F0001h	;Parameter 63 Read on Z
;Parameter Write	e to Prog	gram for Z	
;	 FOII	0C032000Db	·Parameter 10 Write-Prog on 7
P711	FOIL	0C0A2000Dh	·Parameter 11 Write-Prog on 7
P712	FOIL	0C0A2000Dh	·Parameter 12 Write-Prog on 7
D713	FOIL	0C0A20005h	·Parameter 13 Write-Prog on 7
•••	ШQU	0CUA20005II	, rarameter 15 write riog on 2
•••	FOU	000300055	Demonster 62 Write Dres on 7
P203	ΕÕΟ	00042000511	Farameter 65 Write-Prog on Z
;Parameter to W	rite on A	Axis 'W'	
;			
PW01w	EQU	83010001h	;Parameter 1 Write on W
PW02w	EQU	83020002h	;Parameter 2 Write on W
PW03w	EQU	83030003h	Parameter 3 Write on W
PW04w	EQU	83040001h	Parameter 4 Write on W
•••	~		
•••			
PW63w	EQU	833F0001h	;Parameter 63 Write on W
;Parameter to re	ead on Ar	kis 'W'	
;			
PW01r	EQU	03010001h	;Parameter 1 Read on W
PW02r	EQU	03020002h	;Parameter 2 Read on W
PW03r	EQU	03030003h	;Parameter 3 Read on W
PW04r	EQU	03040001h	;Parameter 4 Read on W
•••	~		
•••			
PW63r	EQU	033F0001h	;Parameter 63 Read on W
;Parameter Write	e to Prog	gram for W	
,	EOU	0C0A3000Dh	:Parameter 10 Write-Prog on W
PW11	FOII	0C0A3000Dh	:Parameter 11 Write-Prog on W
 PW12	EOU	0002300000	:Parameter 12 Write-Drog on W
DW1 3	FOIL	0C0A30005h	·Darameter 13 Write-Prog on W
1 11 1 3	50	00043000311	ratameter is write-riog on w
• • •			
••• DWC 2	FOU	0003200055	Demometer 62 Write Dres W
FM03	ΨÕΩ	000A30005n	; rarameter 63 write-prog on W

(H4-AA-D.DOC) 26/752 D1

# Anhang B: Programmbeispiele mit FBs

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: E1EX1.SRC
          16.04.97 15:37
;; DATE:
;;
           DOC
                I 0
                I 60
           DOC
           DOC
                F 8
           DOC
                F 9
           DOC
                F 23
           DOC
                F 400
           DOC
                R 0
           DOC
                R 1
           DOC
               R 2
           DOC R 3
           DOC R 100
           DOC R 101
           DOC R 102
           DOC R 103
           DOC R 104
           DOC R 105
           DOC
                COB 0
           DOC
                XOB 16
                PB 0
           DOC
;
  _____
;-
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
  Programm Beispiel für das Modul PCD4.H4xx
                                                             BLOCTEC
;
  Bewegung ohne 'blended move'.
;
           ------
;
  Datei:
                E1EX1.SRC
;
;
  Beschreibung: Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X vom Referenzpunkt X zu 40mm mit 20mm/s
;
;
                2.- bewege X von der aktuellen Pos. X zu 80mm mit 80mm/s
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in BLOCTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                kann im Debugger durch die aufgefrischte Anzeige der
;
                Register R 100 (aktuelle Position) und R 101 (aktuelle
;
                Geschwindigkeit) angezeigt werden.
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
;
```

```
Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
Anmerkung:
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
                - Wird das Signal 'axis in position' (Eingänge 12 .. 14
;
                  des der H4-Adressen) am Ende der Bewegung nicht gesetzt,
;
                  sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder
;
                  der Param. P15 (tolerance axis in position) zu prüfen.
;
                - Werden die Flags 'Axis in position' (des FB 'FbStatH4')
;
                  nicht gesetzt, sind die Parameter 'Axis No.' dieses FB
;
                  dahin zu prüfen, ob die richtige Achse behandelt wird.
;
; Revision history:
   16.04.97 N. JUNG
                             creation
;
;------
$INCLUDE H4EXTN.DEF
;=====Set general parameters
    XOB
          16
;======Axis init
     CFB
           fbInitH4
                     ;Init H4
           K 48
                      ;Base Adress Module
                      ;Base Statusflags
           0
           к 2
                      ;Moduletype
;======Set 'ENABLE AXIS X'
     \mathbf{LD}
           rComH4
           ENAXi
                      ;Enable axis X
;
     CFB
           fbExeH4 ;Execute Command
           к 48
           r 0
           R 1
           R 2
           R 3
;======Move axes X to reference point (Limit Switch Reference)
;-----Move axis X to Limit Switch Reference (HOME procedure)
     LD
           rComH4
           HomeX
                      ;Home X
;
     CFB
           fbExeH4
                     ;Execute Command
           K 48
           R 0
           R 1
           R 2
           R 3
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
           к 48
                      ;axis X
           1
;
     STH
           F 23
                      ;HOME procedure axis X finished?
     JR
           L status
     EXOB
;
;
;
```

```
;======Main program
     COB 0
           0
;
;=====Start motion program
     STH I O
                   ; Start input OK?
     DYN F 400
     CPB
           н О
     ECOB
;
     рв 0
;-----
;=====Set motion speed at 20mm/s
           r 0
     \mathbf{LD}
                  ;(per default, number of decimals af
           20000
           rComH4
     LD
           SSXi ;Instruction Set Speed X
fbExeH4 ;Execute Command
      CFB
           к 48
                      ;Base address H4
           r 0
                       ;Parameter
           NotUsed
           NotUsed
           NotUsed
;======Motion 1 : Move axis X to 40mm with 20 mm/sec
;-----Motion axis X
           R 0
     LD
           40000
           rComH4
     LD
           XAi ;Instruction Move axis X to absolute
fbExeH4 ;Execute Command
K 48 ;Base address H4
     CFB
           r 0
                      ;Parameter
           NotUsed
           NotUsed
           NotUsed
;======Verify Axis X inposition/Start input OK?
           CFB
                 fbStatH4
Wait1:
           к 48
           1
;=====Query actual position axis
     LD
           rComH4
           QPX
                      ;Axis X
;
                      ;Execute Command
     CFB
           fbExeH4
           K 48
           R 100
                      ;register for actual position
           R 1
           R 2
           r 3
;=====Query actual velocity axis
     LD
           rComH4
           QVX
                       ;Axis X
;
           fbExeH4
                      ;Execute Command
     CFB
           K 48
           R 101
                      ;register for velocity
           R 1
           R 2
           r 3
      STH
           I 0
     ANH F 8
                       ;On Position flag = 1 when position
     ANL F9
                       ;F 9 = 0 when instruction is execute
      JR
           L wait1
```

```
;======Set motion speed at 80mm/s
            R 0
      LD
            80000
                        ; (per default, number of decimals af
      LD
            rComH4
                        ;Instruction Set Speed X
            ssxi
      CFB
            fbExeH4
                       ;Execute Command
            K 48
                        ;Base address H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 1 : Move axis X to 80mm with 80 mm/sec
;-----Motion axis X
      LD
            R 0
            80000
      LD
            rComH4
            XAi
                        ;Instruction Move axis X to absolute
      CFB
            fbExeH4
                        ;Execute Command
            K 48
                        ;Base address H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Verify Axis X inposition/Start input OK?
            CFB
                  fbStatH4
wait2:
            к 48
            1
;=====Query actual position axis
      LD
            rComH4
            QPX
                        ;Axis X
;
      CFB
            fbExeH4
                        ;Execute Command
            K 48
            R 100
                        ;register for actual position
            R 1
            r 2
            r 3
;=====Query actual velocity axis
      LD
            rComH4
            QVX
                        ;Axis X
;
      CFB
            fbExeH4
                        ;Execute Command
            K 48
            R 101
                        ;register for velocity
            R 1
            r 2
            r 3
      STH
            I 0
      ANH
            F 8
                        ;On Position flag = 1 when position
      ANL
            F 9
                        ;F 9 = 0 when instruction is execute
      JR
            L wait2
;======Motion 3 : back to the start point with 80mm/s
            R 0
      \mathbf{L}\mathbf{D}
            0
            rComH4
      LD
                        ;Instruction Move axis X to absolute
            XAi
            fbExeH4
                        ;Execute Command
      CFB
            K 48
                        ;Base address H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
```

```
;-----Motion axis X
;======Verify Axis X inposition/Start input OK?
wait3:
           CFB fbStatH4
           K 48
           1
;=====Query actual position axis
     LD
           rComH4
           QPX
                      ;Axis X
;
     CFB
           fbExeH4 ;Execute Command
           K 48
           R 100
                      ;register for actual position
           R 1
           r 2
           R 3
;=====Query actual velocity axis
     LD
           rComH4
           QVX
                       ;Axis X
;
     CFB
           fbExeH4 ;Execute Command
           K 48
           R 101
                      ;register for velocity
           R 1
           r 2
           r 3
     STH
           I 0
     ANH
           F 8
                       ;On Position flag = 1 when position
     ANL
           F 9
                       ;F 9 = 0 when instruction is execute
     JR
           L wait3
     EPB
```

Notizen

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: E1EX1BL.SRC
;; DATE:
          16.04.97 15:38
;;
           DOC
                I 0
           DOC
                I 60
           DOC F 8
           DOC F 23
           DOC F 400
               R 0
           DOC
           DOC
               R 1
           DOC
                R 2
           DOC
                R 3
           DOC
                R 100
           DOC
                R 101
           DOC
                R 102
           DOC
                R 103
           DOC
                R 104
           DOC
                R 105
           DOC
                 COB 0
           DOC
                 XOB 16
           DOC
                 PB 0
;
;
     _____
;-
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
  Programm Beispiel für das Modul PCD4.H4xx
                                                               BLOCTEC
;
  Bewegung mit 'blended move'.
;
           ------
;
                E1EX1BL.SRC
  Datei:
;
;
  Beschreibung: Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X vom Referenzpunkt X zu 40mm mit 20mm/s
;
                2.- bewege X von der aktuellen Pos. X zu 80mm mit 80mm/s
;
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in BLOCTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                kann im Debugger durch die aufgefrischte Anzeige der
;
                Register R 100 (aktuelle Position) und R 101 (aktuelle
;
                Geschwindigkeit) angezeigt werden.
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
                Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
  Anmerkung:
;
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
                - Wird das Signal 'axis in position' (Eingänge 12 .. 14
;
                  des der H4-Adressen) am Ende der Bewegung nicht gesetzt,
;
                  sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder
;
                  der Param. P15 (tolerance axis in position) zu prüfen.
;
;
                - Werden die Flags 'Axis in position' (des FB 'FbStatH4')
;
                  nicht gesetzt, sind die Parameter 'Axis No.' dieses FB
;
                  dahin zu prüfen, ob die richtige Achse behandelt wird.
;
;
```

```
; Revision history:
  16.04.97 N. JUNG
                           creation
;
;-----
;
$INCLUDE H4EXTN.DEF
;=====Set general parameters
    XOB 16
;======Axis init
    CFB fbInitH4 ;Init H4
          K 48 ;Base Adress Module
               Base Statusflags
          0
          К 2
                    ;Moduletype
;======Set 'ENABLE AXIS X'
         rComH4
     \mathbf{LD}
          ENAXi
                 ;Enable axis X
;
          fbExeH4 ;Execute Command
     CFB
          K 48
          r 0
          R 1
          r 2
          R 3
;======Move axes X to reference point (Limit Switch Reference)
;-----Move axis X to Limit Switch Reference (HOME procedure)
         rComH4
     LD
          HomeX
                    ;Home X
;
     CFB fbExeH4 ;Execute Command
          K 48
          r 0
          R 1
          r 2
          R 3
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
          K 48
                    ;axis X
          1
;
     STH F 23
                    ;HOME procedure axis X finished?
     JR
          L status
     EXOB
;
;
;
;======Main program
    COB 0
          0
;=====Query actual position axis
     \mathbf{LD}
          rComH4
          QPX
                    ;Axis X
;
     CFB
          fbExeH4
                    ;Execute Command
          к 48
          R 100
                    ;register for actual position
          R 1
          R 2
          R 3
```

;=====Query actual velocity axis rComH4  $\mathbf{LD}$ QVX ;Axis X ; CFB fbExeH4;Execute Command к 48 R 101 ;register for velocity R 1 r 2 R 3 ;=====Start motion program I 0 ; Start input OK? STH DYN F 400 нО CPB ECOB ; PB 0 ;-----;======Set motion speed at 20mm/s LDR 0 ; (per default, number of decimals af 20000 rComH4 LDSSXi ;Instruction Set Speed X CFB fbExeH4;Execute Command к 48 ;Base address H4 r 0 ;Parameter NotUsed NotUsed NotUsed ;======Motion 1 : Move axis X to 40mm with 20 mm/sec ;-----Motion axis X R 0 LD 40000  $\mathbf{LD}$ rComH4 XAi ;Instruction Move axis X to absolute CFB fbExeH4;Execute Command K 48 ;Base address H4 R 0 ;Parameter NotUsed NotUsed NotUsed ;=====Set motion speed at 80mm/s R 0 LD; (per default, number of decimals af 80000 LDrComH4 SSXi ;Instruction Set Speed X CFB fbExeH4;Execute Command K 48 ;Base address H4 r 0 ;Parameter NotUsed NotUsed NotUsed

```
;======Motion 1 : Move axis X to 80mm with 80 mm/sec
;-----Motion axis X
           r 0
     \mathbf{LD}
           80000
     LD
           rComH4
           XAi
                       ;Instruction Move axis X to absolute
     CFB
           fbExeH4
                       ;Execute Command
           к 48
                       ;Base address H4
           r 0
                        ;Parameter
           NotUsed
           NotUsed
           NotUsed
;======Motion 3 : back to the start point with 80mm/s
           R 0
     LD
           0
     LD
           rComH4
           XAi
                       ;Instruction Move axis X to absolute
     CFB
           fbExeH4
                       ;Execute Command
                       ;Base address H4
           к 48
           r 0
                        ;Parameter
           NotUsed
           NotUsed
           NotUsed
     EPB
```

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: E1EX2G.SRC
;; DATE:
          16.04.97 15:38
;;
           DOC
                I 0
           DOC
               F 8
           DOC F 9
           DOC F 23
           DOC F 400
           DOC R 0
           DOC
               R 1
           DOC
               R 2
           DOC
               R 3
               R 100
           DOC
           DOC
                R 101
           DOC
                R 102
           DOC
                R 103
           DOC
                R 104
           DOC
                R 105
           DOC
                 т О
           DOC
                 COB 0
           DOC
                 XOB 16
;
;-----
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
  Programm Beispiel für das Modul PCD4.H4xx
                                                              GRAFTEC
;
  Bewegung ohne 'blended move'.
;
           ------
;
                E1EX2G.SRC
  File:
;
;
  Beschreibung: Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X vom Referenzpunkt X zu 40mm mit 20mm/s
;
                2.- bewege X von der aktuellen Pos. X zu 80mm mit 80mm/s
;
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in GRAFTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                kann im Debugger durch die aufgefrischte Anzeige der
;
                Register R 100 (aktuelle Position) und R 101 (aktuelle
;
                Geschwindigkeit) angezeigt werden.
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
                Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
  Anmerkung:
;
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
                - Wird das Signal 'axis in position' (Eingänge 12 .. 14
;
                  des der H4-Adressen) am Ende der Bewegung nicht gesetzt,
;
                  sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder
;
                  der Param. P15 (tolerance axis in position) zu prüfen.
;
;
                - Werden die Flags 'Axis in position' (des FB 'FbStatH4')
;
                  nicht gesetzt, sind die Parameter 'Axis No.' dieses FB
;
                  dahin zu prüfen, ob die richtige Achse behandelt wird.
;
```

```
; Revision history:
  16.04.97 N. JUNG
                           creation
;
;-----
;
$INCLUDE H4EXTN.DEF
;=====Set general parameters
    XOB 16
;======Axis init
    CFB fbInitH4 ;Init H4
          K 48 ;Base Adress Module
               ;Base Statusflags
          0
          К 2
                    ;Moduletype
;======Set 'ENABLE AXIS X'
          rComH4
     \mathbf{LD}
          ENAXi
                 ;Enable axis X
;
     CFB
          fbExeH4 ;Execute Command
          K 48
          R 0
          R 1
          r 2
          R 3
;======Move axes X to reference point (Limit Switch Reference)
;-----Move axis X to Limit Switch Reference (HOME procedure)
         rComH4
     LD
          HomeX
                    ;Home X
;
     CFB fbExeH4 ;Execute Command
          K 48
          r 0
          R 1
          r 2
          R 3
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
          к 48
                    ;axis X
          1
;
     STH F 23
                    ;HOME procedure finished?
     JR
          L status
     EXOB
;
;
;
;======Main program
     COB 0
          0
;
;======Refresh axis status
    CFB fbStatH4
          K 48
          1
                    ;axis X
;=====Query actual position axis
         rComH4
     \mathbf{LD}
          QPX
                    ;Axis X
;
     CFB
          fbExeH4
                    ;Execute Command
          к 48
          R 100
                    ;register for actual position
          R 1
          r 2
          r 3
```

;=====Query actual velocity axis rComH4 LD ;Axis X QVX ; fbExeH4 ;Execute Command CFB к 48 R 101 ;register for velocity R 1 r 2 r 3 ;=====Start motion program CSB 0 ECOB ; SB 0 ;-----IST 0 ;Rectilinear motion 0 0 ;I0 = 1? EST ;0 ;0 ------ST 1 ;Motion 1 I 0 ;I0 = 1? I 6 ;T=0 & I0 = 1? O 1 ;on Position ? ;=====Set motion speed at 20mm/s LD R O 20000 ;(per default, number of decimals af LD rComH4 LD rComH4 SSXi ;Instruction Set Speed X CFB fbExeH4 ;Execute Command K 48 ;Base address H4 R 0 ;Parameter NotUsed NotUsed NotUsed ;======Motion 1 : Move axis X to 40mm with 20 mm/sec ;-----Motion axis X LDr 0 40000 LD rComH4 XAi ;Instruction Move axis X to absolute fbExeH4 ;Execute Command K 48 ;Base address H4 R 0 ;Parameter CFB NotUsed NotUsed NotUsed EST ;1 ;---------;Pause 1 sec ;on Position ST2 I 1 ;on Position ? 02 ;T=0 & I0 = 1?тО LD10 EST ;2 ;-----ST 3 ;Motion 2 I 2 ;T=0 & I0 = 1? O 3 ;on Position ?

```
;======Set motion speed at 80mm/s
            R 0
      LD
                        ;(per default, number of decimals af
            80000
      LD
            rComH4
            SSXi ;Instruction Set Speed X
fbExeH4 ;Execute Command
K 48 ;Base address H4
      CFB
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 2 : Move axis X to 80mm with 80 mm/sec
;-----Motion axis X
            r 0
      LD
            80000
            XAi ;Instruction Move axis X to absolute
fbExeH4 ;Execute Command
K 48 ;Base address H4
R 0 ;Parameter
      LD
      CFB
            NotUsed
            NotUsed
            NotUsed
      EST
                         ;3
;----
     4
                     ;Pause 1 sec
;on Position ?
      ST
            I 3
            O 4
                         ;T=0 & I0 = 1?
            т О
      LD
            10
                         ;4
      EST
;----
            ------
            5 ;Motion 3
I 4 ;T=0 & I0 = 1?
O 5 ;on Position ?
      ST
;======Motion 3 : back to the start point with 80mm/s
           r 0
      LD
            xA1 ;Instruction Move axis X to absolute
fbExeH4 ;Execute Command
K 48 ;Base address
R 0
      LD
      CFB
            r 0
                         ;Parameter
            NotUsed
            NotUsed
            NotUsed
     EST
                         ;5
     ------
;----
                  ;Pause 1 sec
      ST
            6
                        ;on Position ?
            I 5
            06
                         ;T=0 \& I0 = 1?
            т О
      \mathbf{L}\mathbf{D}
            10
      EST
                         ;6
;-----
            0
                        ;I0 = 1?
      TR
            I 0
                        ;Rectilinear motion
            01
                        ;Motion 1
      STH
            I 0
      ETR
                         ;0
```

•				
,	TR STH ANL ETR	1 I F F	1 2 8 9	<pre>;on Position ? ;Motion 1 ;Pause 1 sec ;On Position flag = 1 when position ;F 9 = 0 when instruction is execute ;1</pre>
;	TR STL ANH ETR	2 I O T I	2 3 0 0	;T=0 & I0 = 1? ;Pause 1 sec ;Motion 2 ;2
;	TR STH ANL ETR	3 I O F F	3 4 8 9	<pre>;on Position ? ;Motion 2 ;Pause 1 sec ;On Position flag = 1 when position ;F 9 = 0 when instruction is execute ;3</pre>
,	TR STL ANH ETR	4 I O T I	4 5 0 0	;T=0 & I0 = 1? ;Pause 1 sec ;Motion 3 ;4
;	TR STH ANL ETR	5 I O F F	5 6 8 9	<pre>;on Position ? ;Motion 3 ;Pause 1 sec ;On Position flag = 1 when position ;F 9 = 0 when instruction is execute ;5</pre>
;	TR STL ANH ETR	6 I O T I	6 1 0 0	;T=0 & I0 = 1? ;Pause 1 sec ;Motion 1 ;6
	<b>POR</b>			j U

Notizen

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: E1EX2GB.SRC
;; DATE:
          16.04.97 15:38
;;
           DOC
                I 0
           DOC
               F 8
           DOC F 9
           DOC F 23
           DOC F 400
           DOC
               r 0
           DOC
               R 1
           DOC
                R 2
           DOC
               R 3
               R 100
           DOC
           DOC
                R 101
           DOC
                R 102
           DOC
                R 103
           DOC
                R 104
           DOC
                R 105
           DOC
                 т О
           DOC
                 COB 0
           DOC
                 XOB 16
;
;-----
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
  Programm Beispiel für das Modul PCD4.H4xx
                                                              GRAFTEC
;
  Bewegung mit 'blended move'.
;
           ------
;
                E1EX2GB.SRC
  File:
;
;
  Beschreibung: Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X vom Referenzpunkt X zu 40mm mit 20mm/s
;
                2.- bewege X von der aktuellen Pos. X zu 80mm mit 80mm/s
;
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in GRAFTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                kann im Debugger durch die aufgefrischte Anzeige der
;
                Register R 100 (aktuelle Position) und R 101 (aktuelle
;
                Geschwindigkeit) angezeigt werden.
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
                Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
  Anmerkung:
;
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
                - Wird das Signal 'axis in position' (Eingänge 12 .. 14
;
                  des der H4-Adressen) am Ende der Bewegung nicht gesetzt,
;
                  sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder
;
                  der Param. P15 (tolerance axis in position) zu prüfen.
;
;
                - Werden die Flags 'Axis in position' (des FB 'FbStatH4')
;
                  nicht gesetzt, sind die Parameter 'Axis No.' dieses FB
;
                  dahin zu prüfen, ob die richtige Achse behandelt wird.
;
;
```

```
; Revision history:
  16.04.97 N. JUNG
                           creation
;
;-----
;
$INCLUDE H4EXTN.DEF
;=====Set general parameters
    XOB 16
;======Axis init
    CFB fbInitH4 ;Init H4
          K 48 ;Base Adress Module
               Base Statusflags
          0
          К 2
                    ;Moduletype
;======Set 'ENABLE AXIS X'
         rComH4
     \mathbf{LD}
          ENAXi
                 ;Enable axis X
;
         fbExeH4 ;Execute Command
     CFB
          K 48
          r 0
          R 1
          r 2
          R 3
;======Move axes X to reference point (Limit Switch Reference)
;-----Move axis X to Limit Switch Reference (HOME procedure)
         rComH4
     LD
          HomeX
                    ;Home X
;
     CFB fbExeH4 ;Execute Command
          K 48
          r 0
          R 1
          r 2
          R 3
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
          K 48
                    ;axis X
          1
;
     STH F 23
                    ;HOME procedure finished?
     JR
          L status
     EXOB
;
;
;
;======Main program
    COB 0
          0
;=====Query actual position axis
     \mathbf{LD}
          rComH4
          QPX
                    ;Axis X
;
     CFB
          fbExeH4
                    ;Execute Command
          к 48
          R 100
                    ;register for actual position
          R 1
          R 2
          R 3
```

;=====Query actual velocity axis rComH4 LD ;Axis X QVX ; fbExeH4 ;Execute Command CFB K 48 R 101 ;register for velocity R 1 r 2 r 3 ;======Refresh axis status CFB fbStatH4 к 48 1 ;=====Start motion program CSB 0 ECOB ; SB 0 ;----------____ IST 0 ;Rectilinear motion I 1 ;on Position ? O 0 ;I0 = 1? EST ;0 ;-----;Motion 1 ;I0 = 1? ;on Position ? 1 STI 0 01 ;=====Set motion speed at 20mm/s 20000 ;(per default, number of decimals af LD rComH4 r 0 SSXi ;Instruction Set Speed X CFB fbExeH4 ;Execute Command K 48 ;Base address H4 R 0 ;Parameter r 0 ;Parameter NotUsed NotUsed NotUsed ;======Motion 1 : Move axis X to 40mm with 20 mm/sec ;-----Motion axis X R 0 LD40000  $\mathbf{LD}$ XAi ;Instruction Move axis X to absolute fbExeH4 ;Execute Command K 48 ;Base address H4 rComH4 CFB r 0 ;Parameter NotUsed NotUsed NotUsed ;=====Set motion speed at 80mm/s R 0 LD80000 ;(per default, number of decimals af rComH4  $\mathbf{LD}$ ;Instruction Set Speed X ssxi fbExeH4;Execute Command CFB к 48 ;Base address H4 r 0 ;Parameter NotUsed NotUsed NotUsed

PCD4.H4..

```
;======Motion 2 : Move axis X to 80mm with 80 mm/sec
;-----Motion axis X
      LD
            R 0
            80000
      LD
            rComH4
            XAi
                        ;Instruction Move axis X to absolute
                       ;Execute Command
      CFB
            fbExeH4
            K 48
                        ;Base address H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 3 : back to the start point with 80mm/s
      LD
            R 0
            0
                     ;Instruction Move axis X to absolute
;Execute Command
      LD
            rComH4
            XAi
      CFB
            fbExeH4
                       ;Base address H4
            к 48
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
      EST
                         ;1
;----
     ------
            0
                        ;I0 = 1?
      \mathbf{TR}
                       ;rectilinear motion
            Ι0
                        ;Motion 1
            01
      STH
            I 0
      ETR
                        ;0
;----
            _____
                      ;on Position ?
;Motion 1
;Rectilinear motion
;On Position flag = 1 when position
;F 9 = 0 when instruction is execute
            1
      TR
            I 1
            00
           F 8
      STH
            F 9
      ANL
      ETR
                         ;1
;
      ESB
                         ;0
```

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: E3EX3GB.SRC
;; DATE:
          16.04.97 15:38
;;
           DOC
                I 0
           DOC
               F 8
           DOC F 9
           DOC F 23
           DOC F 24
           DOC F 25
           DOC
               F 39
           DOC
               F 400
           DOC
               R 0
           DOC
                R 1
           DOC
                r 2
           DOC
                R 3
           DOC
                R 100
           DOC
                R 101
           DOC
                R 102
           DOC
                R 103
           DOC
                R 104
           DOC
                R 105
                 т О
           DOC
                COB 0
           DOC
                 XOB 16
           DOC
                PB 0
           DOC
;
;-----
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
  Programm Beispiel für das Modul PCD4.H4xx
                                                              GRAFTEC
;
  Bewegung mit 'blended move'.
;
           ------
;
  File:
                E3EX3GB.SRC
;
;
  Beschreibung: Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X, Y vom Ref.punkt X=40mm, Y=40mm mit 20mm/s
;
                2.- bewege X, Y zu X=80mm, Y=80mm mit 80mm/s
;
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in GRAFTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                können im Debugger durch die aufgefrischte Anzeige der
;
                folgenden Register eingesehen werden:
;
                - X-Achse: R 100 (aktuelle Pos.), R 101 (aktuelle Geschw.)
;
                - Y-Achse: R 102 (aktuelle Pos.), R 103 (aktuelle Geschw.)
;
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
                Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
  Anmerkung:
;
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
```

```
- Wird das Signal 'axis in position' (Eingänge 12 .. 14
;
                  des der H4-Adressen) am Ende der Bewegung nicht gesetzt,
;
                  sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder
;
                  der Param. P15 (tolerance axis in position) zu prüfen.
;
;
                - Werden die Flags 'Axis in position' (des FB 'FbStatH4')
;
                  nicht gesetzt, sind die Parameter 'Axis No.' dieses FB
;
                  dahin zu prüfen, ob die richtige Achse behandelt wird.
;
;
  Revision history:
;
  16.04.97 N. JUNG
                             creation
;
$INCLUDE H4EXTN.DEF
;
;=====Set general parameters
     XOB
         16
;======Axis init
                     ;Init H4
     CFB
          fbInitH4
                     ;Base Adress Module
           K 48
          0 ;Base Statusflags
K 2 ;Moduletype
;======Set 'ENABLE AXIS X'
           rComH4
     LD
           ENAXi
                     ;Enable axis X
;
           fbExeH4 ;Execute Command
     CFB
           к 48
           R 0
           R 1
           R 2
           r 3
;======Set 'ENABLE AXIS Y'
           rComH4
     LD
           ENAYi
                     ;Enable axis Y
;
           fbExeH4
     CFB
                     ;Execute Command
           K 48
           r 0
           R 1
           r 2
           r 3
;=====Move axes X to reference point (Limit Switch Reference)
;-----Move axis X to Limit Switch Reference (HOME procedure)
     LD
           rComH4
           HomeX
                     ;Home X
;
           fbExeH4
                     ;Execute Command
     CFB
           к 48
           r 0
           R 1
           R 2
           r 3
;=====Move axes Y to reference point (Limit Switch Reference)
;-----Move axis Y to Limit Switch Reference (HOME procedure)
           rComH4
     \mathbf{LD}
           HomeY
                      ;Home Y
;
           fbExeH4
                     ;Execute Command
     CFB
           к 48
           r 0
           R 1
           r 2
           r 3
```

```
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
            к 48
            0000000FH ;all available axes in one cycle
;
                        ;HOME procedure axis X finished?
      STH
            F 23
      JR
           L status
           F 39
                        ;HOME procedure axis Y finished?
      STH
     JR
           L status
     EXOB
;
;
;
;======Main program
     COB
            0
            0
;======Refresh axis status
     CFB
            fbStatH4
            K 48
            0000000FH ;all available axes in one cycle
;=====Query actual position axis X
            rComH4
     LD
            QPX
                        ;Axis X
;
     CFB
            fbExeH4
                        ;Execute Command
            K 48
            R 100
                        ;register for actual position
            R 1
            R 2
            R 3
;=====Query actual velocity axis X
            rComH4
     LD
            QVX
                       ;Axis X
;
      CFB
            fbExeH4
                        ;Execute Command
            K 48
            R 101
                        ;register for velocity
            R 1
            r 2
            r 3
;=====Query actual position axis Y
     LD
            rComH4
            QPY
                       ;Axis Y
;
     CFB
            fbExeH4
                        ;Execute Command
            K 48
            R 102
                        ;register for actual position
            R 1
            r 2
            R 3
;=====Query actual velocity axis Y
            rComH4
     \mathbf{L}\mathbf{D}
            QVY
                        ;Axis Y
;
            fbExeH4
      CFB
                        ;Execute Command
            K 48
            R 103
                        ;register for velocity
            R 1
            R 2
            r 3
;=====Start motion program
     CSB
            0
     ECOB
;
```

SB 0 ;-----0 ;Rectilinear motion I 1 ;on Position ? IST 00 ;10 = 1? EST ;0 ;-----. ;Motion 1 I 0 ;I0 = 1? O 1 ···· ST; on Position ? ;=====Set Vector motion speed at 20mm/s  $\mathbf{LD}$ r 0 ;(per default, number of decimals af 20000 rComH4 LD SVi;Instruction Set Vector SpeedfbExeH4;Execute CommandK 48;Base address H4 CFB ;Base address H4 к 48 r 0 ;Parameter NotUsed NotUsed NotUsed ;======Motion 1 : Move axes X,Y to X=40mm, Y=40mm with 20 mm/sec R 0 LD 40000 R 1 LD40000  $\mathbf{L}\mathbf{D}$ rComH4 XYAi;Instr. Move axes X,Y (linear interpfbExeH4;Execute CommandK 48;Base address H4 CFB R 0 ;Parameter R 1 ;Parameter NotUsed NotUsed ;=====Set Vector motion speed at 80mm/s LD r 0 80000 ;(per default, number of decimals af rComH4 SVi ;Instruction Set Vector Speed fbExeH4 ;Execute Command K 48 LDCFB к 48 ;Base address H4 r 0 ;Parameter NotUsed NotUsed NotUsed ;=====Motion 2 : Move axes X,Y to X=80mm, Y=80mm with 80 mm/sec r 0 LD80000 LDR 1 80000 LDrComH4 ;Instr. Move axes X,Y (linear interp XYAi CFB fbExeH4;Execute Command K 48 ;Base address H4 r 0 ;Parameter R 1 ;Parameter NotUsed NotUsed

;=====	===Mot:	ion 3 : back	to the start point with 80mm/s
	LD	R 0	
		0	
	LD	R 1	
		0	
	LD	rComH4	
		XYAİ	;Instr. Move axes X,Y (linear interp
	CFB	fbExeH4	;Execute Command
		к 48	;Base address H4
		r 0	;Parameter
		R 1	;Parameter
		NotUsed	
		NotUsed	
	EST		;1
;	: TD	0	•T0 - 12
	IK		Postilinear motion
		1	Motion 1
	стн	т 0	We wanted a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco
	ETR	1 0	:0
:			,,. 
,	TR	1	on Position ?
		I 1	;Motion 1
		0 0	Rectilinear motion
	STH	F 8	;F 8 = 1 when position axis X is rea
	ANH	F 24	;F24 = 1 when position axis Y is rea
	ANL	F 9	;F 9 = 0 when instruction XAp is exe
	ANL	F 25	;F25 = 0 when instruction YAp is exe
	ETR		;1
;			
	ESB		;0

Notizen

```
;; SAIA PCD SOURCE MODULE - SEDIT V2.0
;; MODULE: OPENPR1.SRC
;; DATE:
         16.04.97 15:38
;;
           DOC
                I 0
           DOC
               F 8
           DOC F 23
           DOC F 39
           DOC F 400
           DOC R 0
           DOC
               R 1
           DOC
                R 2
           DOC
               R 3
           DOC
                R 100
           DOC
                R 101
           DOC
                R 102
           DOC
                R 103
           DOC
                R 104
                R 105
           DOC
           DOC
                 т О
           DOC
                 COB 0
           DOC
                 XOB 16
           DOC
                 PB 0
;
;-----
  SAIA-Burgess Electronics AG, CH-3280 Murten,
;
                                                    OPEN/CLOSE Progr.
  Programm Beispiel für das Modul PCD4.H4xx
;
  Bewegung mit 'blended move'.
;
           _____
;
  File:
                OPENPR1.SRC
;
;
  Beschreibung: Dieses Programm ist mit den OPEN/CLOSE-Befehlen editiert.
;
                Dies bedeutet, dass das ganze Bewegungs-Programm zusammen-
;
                gesetzt ist und nur einmal ins PCD4.H4xx-Modul übertragen
;
                wird. Das geladene Programm wird mittels dem Befehl RUNp
;
                (run program number) von der CPU, z.B. in einem COB
;
                ausgeführt.
;
;
                Dieses Programm besteht aus den folgenden Bewegungen:
;
                1.- bewege X, Y vom Ref.punkt X=40mm, Y=40mm mit 20mm/s
;
                2.- bewege X, Y zu X=80mm, Y=80mm mit 80mm/s
;
                3.- bewege X zurück zum Referenzpunkt
;
;
                Dieses Programm ist in BLOCTEC editiert. Zum Start der
;
                Bewegung ist der Eingang I 0 zu betätigen. Die voll-
;
                ständige Bewegung (Schritte 1 bis 3) wird bei jeder
;
                ansteigenden Flanke am Eingang I 0 einmal ausgeführt.
;
;
                Die aktuelle Position und die aktuelle Geschwindigkeit
;
                können im Debugger durch die aufgefrischte Anzeige der
;
                folgenden Register eingesehen werden:
;
                - X-Achse: R 100 (aktuelle Pos.), R 101 (aktuelle Geschw.)
;
                - Y-Achse: R 102 (aktuelle Pos.), R 103 (aktuelle Geschw.)
;
;
                Es wird vorausgesetzt, dass alle Maschinen- und Modul-
;
                parameter vorgängig ins PCD4.H4xx-Modul geladen wurden.
;
;
  Anmerkung:
                Der FB 'FbStatH4' muss pro Zyklus mindestens einmal auf-
;
                gerufen werden, ansonst die Statusflags 'axix-in position'
;
                oder 'home procedure executed' nicht aufgefrischt werden.
;
;
```

- Wird das Signal 'axis in position' (Eingänge 12 .. 14 ; des der H4-Adressen) am Ende der Bewegung nicht gesetzt, ; sind die PID-Parameter (z.B. erhöhen des P-Faktors) oder ; der Param. P15 (tolerance axis in position) zu prüfen. ; ; - Werden die Flags 'Axis in position' (des FB 'FbStatH4') ; nicht gesetzt, sind die Parameter 'Axis No.' dieses FB ; dahin zu prüfen, ob die richtige Achse behandelt wird. ; Revision history: ; 16.04.97 N. JUNG creation ; ; **\$INCLUDE H4EXTN.DEF** ;=====Set general parameters XOB 16 ;======Axis init ;Init H4 CFB fbInitH4 ;Base Adress Module к 48 0 ;Base Statusflags K 2 ;Moduletype ;======Set 'ENABLE AXIS X' rComH4 LD ENAXi ;Enable axis X ; fbExeH4 ;Execute Command CFB к 48 R 0 R 1 R 2 r 3 ;======Set 'ENABLE AXIS Y' rComH4 LDENAYi ;Enable axis Y ; fbExeH4 CFB ;Execute Command K 48 r 0 R 1 r 2 r 3 ;=====Move axes X to reference point (Limit Switch Reference) ;-----Move axis X to Limit Switch Reference (HOME procedure) LDrComH4 HomeX ;Home X ; fbExeH4;Execute Command CFB к 48 r 0 R 1 R 2 r 3 ;=====Move axes Y to reference point (Limit Switch Reference) ;-----Move axis Y to Limit Switch Reference (HOME procedure) rComH4  $\mathbf{LD}$ HomeY ;Home Y ; fbExeH4 ;Execute Command CFB к 48 R 0 R 1 r 2 r 3
```
;=====Query axes status and wait for the end of HOME procedure
status: CFB fbStatH4
            к 48
            0000000FH ;all available axes in one cycle
;
                       ;HOME procedure axis X finished?
      STH
            F 23
           L status
     JR
          F 39
                       ;HOME procedure axis Y finished?
     STH
     JR
           L status
;======Motion program
;----Open program
     LD
           R 1
            1
           rComH4
     LD
                    ;OPEN Program 1
;Basisadress H4
            OPEN1
      CFB
           fbExeH4
                      ;Parameter
            K 48
            R 1
                       ;Parameter
            NotUsed
           NotUsed
           NotUsed
;-----
;=====Set Vector motion speed at 20mm/s
           R 0
     LD
            20000
           rComH4
     \mathbf{LD}
           SVp;Set Vector SpeedfbExeH4;Execute CommandK 48;Basisadress H4
     CFB
           r 0
                       ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 1 : Move axes X,Y to X=40mm, Y=40mm with 20 mm/sec
;-----Motion axis X,Y (XYAp)
     LD
           r 0
            40000
     LD
           R 1
            40000
           rComH4
     \mathbf{LD}
           XYAp ;Move absolute axes X,Y
fbExeH4 ;Execute Command
     CFB
                       ;Basisadress H4
            K 48
                       ;Parameter
            r 0
            R 1
                        ;Parameter
            NotUsed
            NotUsed
;-----Wait loop-----
     LD
           r 0
            1000
     LD
            rComH4
                       ;Wait for 1000 ms
            WAIT
     CFB
            fbExeH4
                        ;Execute Command
            K 48
                        ;Basisadress H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
```

```
;=====Set Vector motion speed at 80mm/s
            R 0
      LD
            80000
      LD
            rComH4
                       ;Set Vector Speed
            SVp
                       ;Execute Command
      CFB
            fbExeH4
            к 48
                        ;Basisadress H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 2 : Move axes X,Y to X=80mm, Y=80mm with 80 mm/sec
;-----Motion axis X,Y (XYAp)
            r 0
      LD
            80000
      LD
            R 1
            80000
      LD
            rComH4
                     ;Move absolute axes X,Y
;Execute Command
;Basisadress H4
            XYAp
      CFB
            fbExeH4
            к 48
            r 0
                        ;Parameter
            R 1
                        ;Parameter
            NotUsed
            NotUsed
;-----Wait loop-----
      LD
            r 0
            1000
      LD
            rComH4
                      ;Wait for 1000 ms
;Execute Command
            WAIT
      CFB
            fbExeH4
                        ;Basisadress H4
            K 48
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
;======Motion 3 : back to the start point with 80mm/s
;-----Motion axis X,Y(XYAp)
           r 0
     LD
            0
      \mathbf{LD}
            R 1
            0
      \mathbf{LD}
            rComH4
                       ;Move absolute axes X,Y
            XYAp
                       ;Execute Command
      CFB
            fbExeH4
                        ;Basisadress H4
            K 48
            r 0
                        ;Parameter
            R 1
                        ;Parameter
            NotUsed
            NotUsed
;-----Wait loop-----
            r 0
      \mathbf{L}\mathbf{D}
            1000
      \mathbf{LD}
            rComH4
                        ;Wait for 1000 ms
            WAIT
      CFB
                        ;Execute Command
            fbExeH4
            K 48
                        ;Basisadress H4
            r 0
                        ;Parameter
            NotUsed
            NotUsed
            NotUsed
```

```
;-----Program END and CLOSE------
           rComH4
     LD
           END
                       ;Move absolute axis X
     CFB
           fbExeH4
                       ;Execute Command
           к 48
                       ;Basisadress H4
           r 0
                       ;Parameter
           NotUsed
           NotUsed
           NotUsed
     LD
           rComH4
                       ;Move absolute axis X
           CLOSE
     CFB
                      ;Execute Command
           fbExeH4
           к 48
                       ;Basisadress H4
           r 0
                       ;Parameter
           NotUsed
           NotUsed
           NotUsed
     EXOB
;======Main program
     COB
           0
           0
;
;======Refresh axis status
     CFB
           fbStatH4
           к 48
           0000000FH ;all available axes in one cycle
;=====Query actual position axis X
     LD
           rComH4
           QPX
                       ;Axis X
;
     CFB
           fbExeH4
                       ;Execute Command
           к 48
           R 100
                       ;register for actual position
           R 1
           r 2
           r 3
;=====Query actual velocity axis X
     LD
           rComH4
           QVX
                       ;Axis X
;
           fbExeH4
     CFB
                       ;Execute Command
           к 48
           R 101
                       ;register for velocity
           R 1
           r 2
           r 3
;=====Query actual position axis Y
           rComH4
     \mathbf{LD}
           QPY
                       ;Axis Y
;
           fbExeH4
     CFB
                       ;Execute Command
           K 48
           R 102
                       ;register for actual position
           R 1
           r 2
           R 3
```

```
;=====Query actual velocity axis Y
     LD
           rComH4
           QVY
                       ;Axis Y
;
     CFB
           fbExeH4
                       ;Execute Command
           K 48
           R 103
                       ;register for velocity
           R 1
           r 2
           r 3
;=====Start motion program
           r 0
     LD
                       ;Set program number = 1
           1
     LD
           rComH4
           RUNi
                       ;RUN Program 1
;
     STH
           Ι 0
                       ;If Input I0=1
           F 400
     DYN
           H fbExeH4
     CFB
                       ;Execute Command
           K 48
                       ;Basisadress H4
           r 0
                       ;Parameter
           R 1
                       ;Parameter
           R 2
                       ;Parameter
           R 3
                       ;Parameter
     ECOB
```

Absender:	An:
Firma Abteilung Name Adresse	SAIA-Burgess Electronics AG Bahnhofstrasse 18 CH-3280 Murten (Schweiz) http://www.saia-burgess.com
Tel.	GB: Electronic Controllers
Datum	Handbuch PCD4.H4x0 Positioniermodul für Servoantrieb
	mit Linear-und Kreisinterpolation

Falls Sie Vorschläge zu SAIA[®] PCD zu machen oder Fehler in diesem Handbuch gefunden haben, sind wir Ihnen für einen kurzen Bericht dankbar.

Ihre Vorschläge: