

Manual FBox Builder (Full Version)

Document-No. 26/837; Edition E5; 17.01.2006

id11813671 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Document-History

Document-No. Edition Modification Publication Remarks

PE2 08.09.2004 Preliminary Edition

 E2 09.09.2004 Published Edition

 E3 09.06.2005 Updated Version

 E4 11.11.2005 Updated for PG5 B1.4.030

 E5 17.01.2006 Updated for PG5 B1.4.043

0.2 Trademarks

 Saia
®
 and Saia

®
 PCD are registered trademarks of Saia-Burgess Electronics AG

 Windows 95/98, Windows NT, Word, Excel, PowerPoint, FrontPage and Micro-

soft Internet Explorer are registered trademarks of The Microsoft Corporation.

 Netscape Navigator is a registered trademark of The Netscape Communications

Technical modifications and changes depending on state of the art.

SAIA-Burgess Controls Ltd, 2006. ©AII rights reserved.

Published in Switzerland

Manual FBox Builder Document 26/837; Edition E 5 11.01.2006 0-2

 Saia-Burgess Controls Ltd

FBOX Builder Manual I 17.01.06

Preface

This document is intended to give you a good understanding of the FBOX Builder and therefore
also a good understanding of the FBOX development in general. The document brings you
quickly with its �Quick Start� chapter into the main features of the tool. The chapter �FBOX
Basics� gives you smoothly the knowledge to build simple FBOXES. When you have a good
understanding of the basics, the chapter �FBOX Advanced� will open you the way to use the full
power of the FBOX functionalities.

To use properly the FBOX Builder you must have a good knowledge of PG5 and the Instruction
List language.

The SAIA FBOX Builder allows you to create your own FBOXES for FUPLA programming. The
FBOX Builder greatly improves the FBOX development process. You can build your FBOXES
based on existing code like FB/PB/FBOX or you can begin a new FBOX from scratch.

The FBOX Builder does support you also in the deployment process of your FBOX Library,
functionalities like Language Management, Help File Generator, Install Library Package or
Version Management at each level: library, family and FBOX are the main strong points of this
software tool.

Saia-Burgess Controls Ltd

FBOX Builder Manual I 17.01.06

Contents

1 Overview 1-1
2 Quick Start 2-1
3 FBOX Builder Hierarchy 3-1
4 FBOX Basics 4-1
5 FBOX Advanced 5-1
6 FBOX Programming Language 6-1

Saia-Burgess Controls SA 1-1

PG5-WorkShop I Chapter 1 I FBOX Builder I 17.01.06

Contents

1 Overview 2
1.1 Main Software Components 2
1.1.1 FBOX Library Manager 3
1.1.2 Message Window 4
1.1.3 FBOX Workspace 4

1-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 1 I FBOX Builder I 17.01.06

1 Overview

1.1 Main Software Components

Message

Window

FBOX

Workspace

FBOX

Library

Manager

Saia-Burgess Controls SA 1-3

PG5-WorkShop I Chapter 1 I FBOX Builder I 17.01.06

1.1.1 FBOX Library Manager

The begining of every operations starts here: create a library, create a family,
create/import/modify an FBOX.

FBOX

Libraries

FBOX

Families

FBOXES

Info

window

Family

help

1-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 1 I FBOX Builder I 17.01.06

1.1.2 Message Window

Compilation Errors and Warnings will be displayed in the Message Window. In case of
error, you can find the mistake in double clicking on the message.

1.1.3 FBOX Workspace

The Workspace belongs to one FBOX and allows the full configuration and
programming of it.

FBOX

Parameters

Editor

FBOX Face

Viewer

FBOX

Configuration

FBOX

Programming

FBOX Help

Editor

FBOX

�ToDo� List

Editor

FBOX

Navigator

Saia-Burgess Controls SA 2-1

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

Contents

2 FBOX Builder Quick Start 2
2.1 Import an Existing FB 2
2.1.1 Create a new Project 2
2.1.2 Write a simple Blinker FB 4
2.1.3 Create an FBOX based on the �Blinker� FB 5
2.1.4 Create the Help File for your new FBOX Library 11

2-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

2 FBOX Builder Quick Start

2.1 Import an Existing FB

The aim of this chapter is to build an FBOX based on the functionality of an existing FB.

2.1.1 Create a new Project

1. Click On New Project:

2. You get the New Project Dialog:

3. You get now the New Library Dialog:

Give a name to
your first FBOX
Library.

Add a short
description...

Project
directory

Name of the
Library directory

Finally Click
on OK!

Give a name to
your first project. Browse for

the root
directory of
the project

Add a short
description...

Finally Click
on OK!

Directory
where you
want the files

to be placed
after
compilation

Saia-Burgess Controls SA 2-3

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

4. You get the Family Dialog:

Important: All the languages must be added when creating a
project and should never be deleted. The Restore mechanism is
not able to restore more languages than the �Actual� project
languages number.

Give a name
to your first
Family.

Project
Directory

Name of the
Family Directory

Add a short
Description...

Finally Click
on OK!

2-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

2.1.2 Write a simple Blinker FB

1. Create a new PG5 project called �FirstFBoxEditorProject� and add an IL source file
called �FBSourceFile.src� to it, you should get something as follow:

2. Copy the following code to the source file and save it.

;;Blinker FB

BlinkInit EQU FB

Blinker EQU FB

Timer EQU T

;; Init FB

 FB BlinkInit

IV DEF =1 ;; {In=IV_I} Timer Init Value

 GET =1

 Timer

 EFB

;; Run FB

 FB Blinker

Ou DEF =1 ;; {Out=Ou_B} Output

TV DEF =2 ;; {In=TV_I} Time Value

 STH Timer

 JR H EndFb

 ACC H

 GET =2

 Timer

 COM =1

EndFb:

 EFB

Saia-Burgess Controls SA 2-5

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

2.1.3 Create an FBOX based on the �Blinker� FB

1. Right click on the Family and select the menu �Import -> PB-FB��:

2. Browse to the PG5 project you just create:

3. Select the FB source file:

2-6 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

4. You get the PB-FB Import Dialog

5. You get the following workspace:

Give a name
to your first
FBOX.

FBOX
Directory
Name

FB Source
file directory Select the

Initialisation
FB

Select the
Run FB

Finally Click
on OK!

The macro name:

_MyBlinker

The FBox you

just created.

FB parameters are in

�Parameter Editor�

defined by the FB

parameters tags.

How the FBOX

will look like

in FUPLA.

Saia-Burgess Controls SA 2-7

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

6. You can see the code of your FBOX:

7. Choose where to copy the library files after build:

And click the �OK� button to confirm your selection.

FBOX Macro

header.

FBOX Macro

code.

If you want modify

the code, uncheck

the read-only

checkbox.

Choose the �Usr�
directory of your
PG5:
...\PG51_4\Libs\Usr

2-8 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

8. Add the Library Information

 or

And fill up the information fields:

Select
Properites in
Library Tab�s
context menu.

Enter a unique
library name

Your company
name (read-only)

Enter the
name of the
developer

Enter the text
that will be
displayed
during the
installation

Check the PG5
versions that
support your
library

Choose the
directory in
which you want
to install your
library

Choose the type
of delivery that
correspond to
your needs

Finally click
OK to save
your work

Browse for a
Logo that will be
displayed on the
setup package

Choose the kind of
protection you want
when distributing
your library

Saia-Burgess Controls SA 2-9

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

9. You are ready now to generate the FBOX Library Files:

10. The message window looks like this:

Click on the Build

Library button of the

ToolBar or press �F2�

2-10 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

11. Try your First FBOX:

Create a new FUPLA file in PG5, select the User Tab of the FUPLA �FBOX
Selector�, select the �MyBlinker� FBOX and drop it on the FUPLA page. This is what
you get:

12. Compile and download the program in your PCD.

Saia-Burgess Controls SA 2-11

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

2.1.4 Create the Help File for your new FBOX Library

1. Add a description for the Library:

Right Click on the Library Tab and Select the �Property� menu:

Click on the Help Tab and add your description:

2. Add a description for the Family:

Right Click on the Family and Select the �Property� menu. (Idem than the Library)

3. Add Comments for each parameter of the �Parameter Editor�:

2-12 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

4. Have a look now to the Help Tab of the workspace:

5. Compile the Help File:

You will see the following window during the help build:

List of the �Interface�

parameters wit their

comments.

Add a General

Description in this pan. Add a Functional

Description in this pan.

Add the keyword of

the link selected.

Insert picture

Saia-Burgess Controls SA 2-13

PG5-WorkShop I Chapter 2 I FBOX Builder I 17.01.06

The message window will look like this:

6. Double click on the �FIRSTLIBRARY.HLP� which is also in the Output Directory:

Library Description

Family Description

FBOX Description

2-14 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 2 I FBOX Builder I 17.01.06

7. Have a look at the FBOX Description:

Saia-Burgess Controls SA 3-1

PG5-WorkShop I Chapter 3 I FBOX Builder I 17.01.06

Contents

3 FBOX Builder Hierarchy 3-2
3.1 The Project Level 3-2
3.2 The Library Level 3-3
3.3 The Family Level 3-4

3-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 3 I FBOX Builder I 17.01.06

3 FBOX Builder Hierarchy

3.1 The Project Level

The FBOX Builder is organised in projects. The project level is the start point of any
activity with the FBOX Builder. Basically a project is the only level that belongs only to
the user. The user can organise freely his project without any constraints regarding
FUPLA.
A Project defines a working directory where all the data needed by the FBOX Builder
are stored. An output directory must also be given by the user to tell where the files
generated by the compilation must be placed.
The Project contains one or more FBOX Library, which themselves contains one or
more FBOX Family, which themselves finally contains one or more FBOXES.

As you can see in the title bar of the above picture, the language of the FBOX Library
belongs to the project level.

Saia-Burgess Controls SA 3-3

PG5-WorkShop I Chapter 3 I FBOX Builder I 17.01.06

3.2 The Library Level

The FBOX Library contains FBOX Families. The Library level of the FBOX Builder is the
same as the Library level defined in FUPLA. The FUPLA libraries are the following:

- Standard Library
- Application Library
- Ladder Library
- User Library

When a library development is finished, the user can move it to the FUPLA user library
in the ��\libs\usr� directory and the library will appear in the FBOX Selector in FUPLA.

For example in the menu �View Options� there is the possibility to choose to copy the
Library files in the PG5 library directory of your choice.

Or you can also create an install package if you want to distribute your library and in
that case the target directory is defined in the Library properties dialog.

3-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 3 I FBOX Builder I 17.01.06

The compiler works at the Library Level; so when you compile, you compile a whole
FBOX Library.

3.3 The Family Level

The FBOX Family contains FBOXES. The family level of the FBOX Builder is the same
as the Family level defined in FUPLA.

As example, this is the family list of the FUPLA Standard library:

FBOX Libraries

FBOX Families

FBOXES of the
Flip-Flop Family

Saia-Burgess Controls SA 4-1

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

Contents

4 FBOX Basics 2
4.1 FBOX Development Process 2
4.2 Create a Project 3
4.2.1 Project Tips 4
4.3 Create a Library 5
4.3.1 Library Properties 6
4.4 Create a Family 8
4.4.1 Family Properties 9
4.5 Create an FBOX 11
4.5.1 FBOX Workspace 13
4.5.2 Define the FBOX Interface 14
4.5.3 Write the FBOX Functionality 17

4.5.3.1 FBOX LED Handling 19
4.5.3.2 Add a LED �Reset� Button 20
4.5.3.3 FBOX Version Handling 23
4.5.3.4 Using �Block� Directives 23

4.5.4 Using TODO and History 24
4.5.4.1 The TODO types 25
4.5.4.2 What about History items 26

4.5.5 Create the FBOX Help Topic 27
4.5.5.1 Add a New Picture 28
4.5.5.2 Add table 28
4.5.5.3 Add a new Link 28
4.5.5.4 Font style buttons 28
4.5.5.5 Add a new Keyword 28
4.5.5.6 Help Files Pre-defined structure 29

4.6 Generate Output Files 31
4.7 Documentation Generator 33
4.8 Add-Tools to FBOX Builder 35

4-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4 FBOX Basics

In this chapter you will see an example how to make a simple FBOX with the FBOX
Builder. The �Adjust and View� variables and the language handling will be treated in
the next chapter.

4.1 FBOX Development Process

To develop an FBOX Library, there are some steps to follow. Of course every developer
has his own habits. This paragraph roughly describes the main steps to create an FBOX
Library.
The FBOX Builder gives you several ways to build an FBOX. You can import an existing
FBOX and modify it, you can import existing code as FB or FUPLA page or you can
create an FBOX from scratch. Each of these solutions has its own particularity but all
have basically the same main steps during the development.

The central FBOX file is the �DEF� file that defines the interface of the FBOX. Usually, to
develop an FBOX, this file would be the start point. With the FBOX Builder the
philosophy is the same, before writing the functionality of your FBOX, you have to
define what is going to be its interface with the outside world and what internal data you
gone a use to build the functionality. So the first step is to define the �Input�,

�Output�, �Constant� and �Adjust� variables. The �Static� and �Dynamic� variables
can be defined as needed during the definition of the functionality of the FBOX, of
course all variables can evolve and are never fixed; at every time you can add new
ones and remove others. This step will be done in the �Parameter Editor� if you begin an
FBOX from scratch or it will be done in the source file of the FB for example; but in all
cases, the �Parameter Editor� will greatly help you for this kind of work.

When the interface of the FBOX has been defined, the second step is to write the

behaviour of it. This step can be done in IL code with the �Source Editor� of the FBOX
Builder or with the text editor of your choice or with FUPLA.

At that stage, your FBOX is functional. As third step, you can create a �Help File�
using the �Help Generator� of the FBOX Builder. This help file is based on the
comments you entered for each FBOX parameter, the help text you entered for the
Library and the Family and finally on the text, picture and link you add in the �Help� tab
that belongs to the FBOX.

It is now time as fourth step to test your Library, to do so you have to build it and
copy the FBOX files to the FUPLA directory �USR�. If you check in the option dialog
�Copy the files after build to:� and �Start Help compiler after build� all the necessary files
will be copied automatically to the right directory. Finally open FUPLA and create a
small test program with your new FBOXES and check them out. This project can be
added to Test projects in Info window�s �Files� tab for easier access.

The final step is the deployment of your Library. If you check the option �Create
Install Package�, after a successful build an �EXE� file will be created. This file is
created based on the Library Information you gave in the �Library properties� dialog in
the FBOX Builder. This exe will simply copy the FBOX files in the directory chosen.

Saia-Burgess Controls SA 4-3

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.2 Create a Project

The project is the highest level of the FBOX Builder. A project can contain several
FBOX Libraries, FBOX Families and single FBOXES in different languages.

 To create a project you have to choose the following menu:

 Or you can directly click on the following tool bar button:

 The following dialog will appear:

- Project Name: This entry is used by the FBOX Builder as a name for the root
directory of all the data that belongs to this project.

- Projects Directory: This entry is used by the FBOX Builder as the root directory for
the projects. For each new project you are creating a new root directory can be
entered; this gives you another chance to organise your FBOXES.

- Description: This entry is only used internally, it will never appear in a help file or
what ever output files.

When you filled up all the entries, click on the OK button to accept or on Cancel to abort
the current task.

Important: All the languages must be added when creating a
project and should never be deleted. The Restore mechanism
is not able to restore more languages than the �Actual� project
languages number.

4-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.2.1 Project Tips

- You can choose in the options dialog to always open the last project used:

Saia-Burgess Controls SA 4-5

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.3 Create a Library

If you are currently creating a new project, the following dialog will automatically appear
when you clicked on the OK button of the �New Project Dialog�. But if you want to add a
new library to an existing project, you have to use the following menu:

Or you can use the tool bar button:

Or in right clicking on an existing library tab of the Library Manager, you get the
following popup menu:

 You will get the following dialog:

- Name: the FBOX Builder will use this entry as file name when generating the
Library related files.

- Root Directory: The library you are creating will be place under the project
directory you just have created.

- Object Directory: This entry is used by the FBOX Builder as root directory name
for the Library. By default the library directory has the same name as the library.

- Description: This entry is used to describe the library. It is only used internally; it
will not be part of the help file generated by the FBOX Builder.

4-6 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.3.1 Library Properties

All information that belongs to the library can be edited in the �Library Properties� dialog.
You can obtain this dialog in right clicking on the Library tab and choose the
�Properties�� menu:

You will get this dialog:

- Name: This entry is Library name previously entered. The library name can be

modified; the library tab of the �Library Manager� will adapted.
- Target File: Specify here the library filenames (.LIN).
- Root Directory: The location of the current library. This field is read-only.
- Version: This entry is used to manage the modification of the library. Each time you

have to make changes in your library, you should increment the version. This way
you can keep track of your modifications in the release notes generated by the
FBOX Builder.

- Release: Internal means that the version will begin with '$' sign
Beta means that the version will begin with 'b' sign
Official means that the version will begin with 'v' sign

- Description: This is the library description previously entered.

Saia-Burgess Controls SA 4-7

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

We�ll now have a look at the �Help� tab of this dialog:

This tab is very simple; the text you�ll write will be displayed as �Library Overview� in the
help file generated by the �Help Generator� of the FBOX Builder.

In this chapter, we will not treat �Install� tab. Just for your information, the �Install� tab
contains all the data needed by the �Library Installer� of the FBOX Builder. This feature
will be explained later in the �FBOX Advanced� chapter.

4-8 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.4 Create a Family

If you are currently creating a brand new project, the following dialog will automatically
appear when you clicked on the OK button of the �New Library� Dialog. But If you want
add a new family to an existing project, you have to use the following menu:

Or you can use the tool bar button:

Or in right clicking on an existing family folder of the Library Manager, you get the
following popup menu:

You will get the following dialog:

Saia-Burgess Controls SA 4-9

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

- Name: the FBOX Builder will use this entry as file name when generating the
Family related files.

- Root Directory: The Family you are creating will be placed under the Library
directory you just have created.

- Object Directory: This entry is used by the FBOX Builder as root directory name
for the Family. By default the Family directory has the same name as the Family.

- Description: This entry is used to describe the Family. It is only used internally; it
will not be part of the help file generated by the FBOX Builder.

4.4.1 Family Properties

All information that belongs to the family can be edited in the �Family Properties� dialog.
You can obtain this dialog in right clicking on the Family folder and choose the
�Properties�� menu:

You will get this dialog:

4-10 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

- Name: This entry is Family name previously entered. The Family name can be

modified; the family folder name of the �Library Manager� will be adapted but not the
family directory itself.

- Root Directory: The location of the current family. This field is read-only.
- Version: This entry is used to manage the modification of the family. Each time you

have to make changes in your family, you should increment the version. This way
you can keep track of your modifications in the release notes generated by the
FBOX Builder.

- Internal: If this check box is checked, the �Library Installer� of the FBOX Builder will
display during the installation the �$� character before the version number.

- Description: This is the family description previously entered.

We�ll now have a look at the �Help� tab of this dialog:

This tab is very simple; the text you�ll write will be displayed as �Family Overview� in the
help file generated by the �Help Generator� of the FBOX Builder.

Saia-Burgess Controls SA 4-11

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5 Create an FBOX

There are several possibilities to create a new FBOX with the FBOX Builder:

- Import an existing FBOX
- Import an existing FB or PB (Quick start example)
- Create an FBOX from scratch

In this chapter, to show you the entire link between the different parameters of an
FBOX, we�ll begin a brand new FBOX from scratch.
As example, we�ll develop a �Math� FBOX that will evolve through this chapter to the
�FBOX Advanced� chapter also. We will give some more functionality to this FBOX all
along the chapters.

You can create a new FBOX with the following menu:

You can also use the following tool bar button:

Or in right clicking the family in which you want add the new FBOX:

4-12 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

You will get the following �New FBOX� dialog:

- Name: The name of the FBOX is very important, it will be used as default to be

displayed on the FBOX Face, the �Help Generator� will use it as topic keyword and
finally the FBOX Builder will use this name as default directory name to store the
FBOX data.

- Root Directory: The FBOX you are creating will be placed under the Family
directory you just have created.

- Object Directory: This entry is used by the FBOX Builder as root directory name
for the FBOX. By default the FBOX directory has the same name as the FBOX.

- Description: This entry is used to describe the Family. It is only used internally; it
will not be part of the help file generated by the FBOX Builder.

Click on the OK button to validate your entries or on Cancel to abort the process you
began.

If you clicked on the OK button, a workspace that belongs to the created FBOX is
displayed and a new FBOX node is created under the Family you have chosen for this
new FBOX.

Saia-Burgess Controls SA 4-13

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.1 FBOX Workspace

The workspace is basically the tool to program and configure an FBOX. The workspace
belongs to one and only one FBOX.

 The upper part contains the following tabs:

- General: where you define the graphical interface of the FBOX.
- Source: where you edit the code (functionality) of the FBOX.
- Help: where you edit the Help topic that belongs to that FBOX.
- TODO: where the list of task which have to be done on the FBOX.
- optionally : Schematic : where the imported Fupla page is displayed.

The Hide button hides the Parameter Editor and the block info window (they are described
below).

The lower part contains on the left side the �Parameter Editor� where you define the
interface and the data needed by the FBOX. The right part of the workspace is called
the �Block info� window and has the following tabs:

- Files: where you can see the FBOX attached files and where you can navigate into

the workspace with double clicking on the node you want
- Graphic: where you see the graphical face of the FBOX you are building.

Important:
The first thing to do is to check the macro name of our FBOX because this name must
be unique. A good habit is to use your company name as prefix of the macro name or at
least an abbreviation like for example �Saia�; so the macro name of our FBOX will be
�_SaiaMath�

4-14 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.5.2 Define the FBOX Interface

As first step, we want to implement only the addition of two integer numbers. To do so
we need to enter with two integers and go out with the result. We need also to define a
bit what we want as graphical interface.

1. Add two inputs to the FBOX

Select the �Input� tab of the �Parameter Editor�:

Right click on the �Parameter Editor� and choose the Add menu:

And then fill up the different fields as follows:

o Label: The string displayed on the FBOX for this input entry.
o Symbol: The string used in the source code to handle this input entry.
o Edge Triggered: Used only in the case of a Boolean input to detect the

raising or the falling edge of this entry.
o Stretched: �Yes� means that this input entry is stretchable; in other words,

the user can choose how many of this input he wants.
o Type: This entry defines what kind of data format we handle for this math

function
o Comment: This comment describes the input entry and it will be used in

the generated help file to explain the FBOX parameters.

Add a second input for the second number to add, you should finally have
something like that:

Saia-Burgess Controls SA 4-15

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

2. Add one output to the FBOX

Select the �Input� tab of the �Parameter Editor�:

Right click on the �Parameter Editor� and choose the Add menu:

And then fill up the different fields as follow:

o Label: The string displayed on the FBOX for this output entry.
o Symbol: The string used in the source code to handle this output entry.
o Static: Static means that the media that belongs to this entry is used only

by this FBOX; in other words, this integer value can only be changed by the
current FBOX and no other. The Marked Static simply asks FUPLA to
display a small sign on the entry to show the user that it is static. With this
option, FUPLA will reserve a static variable for this output and draw a small
sign to show to the user. For the FBOX Developer, that means he does not
need to write that output at each cycle, it is done automatically by FUPLA.

o Stretched: �Yes� means that this output entry is stretchable; in other words,
the user can choose how many of this output he wants.

o Type: This entry defines what kind of data format we handle for this math
function

o Comment: This comment describes the output entry and it will be used in
the generated help file to explain the FBOX parameters.

4-16 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

3. Play with the Graphical parameters

On the �General� tab of the workspace you can increase the �Width� of your FBOX
up to 10 and maybe choose the �Position� of the FBOX name to �Center�:

The �Graphic� tab of the �FBOX Navigator� should display the following FBOX:

Saia-Burgess Controls SA 4-17

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.3 Write the FBOX Functionality

When the FBOX interface is defined, we must write the code that will give the behaviour
of the FBOX.
Maybe we should first have a look at what the FBOX Builder has generated for us so
far. Click on the �Source� tab of the workspace:

 This is what you should get:

In the upper pan, you can see the macro header generated by the FBOX Builder. This
part is read-only and it is entirely managed by the FBOX Builder. What you can see in
this macro header:
- _SaiaMath: It is the name of the macro we have chosen in the previous steps.
- Macro: It is the reserved keyword for the macro declaration
- Vers: It is the version number of the FBOX that is passed to the macro if you want

make further test related to the version.
- SymNum1: It is the symbol of the first input parameter we defined in the

�Parameter Editor�.
- SymNum2: It is the second input parameter.
- SymRes: It is the symbol of the output parameter we defined in the �Parameter

Editor�.
- Name: We did not change on the �General� tab the �AcceptName� entry. We left it

to �Optional� that means the user can give a name to his FBOX and that name is
passed to the FBOX macro where it can be used for example to define groups.

And in the lower pan is actually where you must write the code of the FBOX. In most
cases, an FBOX has some data that needs to be initialised when the PCD starts; the
initialise code must be placed in between the �$INIT / $ENDINIT� directives. The code
that will be executed during the normal program cycle must be placed after the
�$ENDINIT� directive.

4-18 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

For this first step in the �Math� FBOX development, we have decided to implement a
simple �add� function that can be written in IL as follows:

ADD SymNum1

SymNum2

SymRes ;;Result of (SymNum1 + SymNum2)

For this function, we should initialise all the parameters with the �0� value; we should
add the following lines as initialise code:

 LD SymNum1

 K 0

 LD SymNum2

 K 0

 LD SymRes

 K 0

 Here is the source you should get:

Saia-Burgess Controls SA 4-19

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.3.1 FBOX LED Handling

It is possible to show the internal status of an FBOX when you are online with FUPLA in
adding a LED on its face, which is red in a certain state, green in another state. When
you are offline, this LED stays grey.

To add this LED you just have to select the �LED� checkbox that is situated on the
�General� tab of the workspace:

The result on your FBOX is the following:

This LED is linked to static flag, which is automatically added when you select this
option. Click on the static tab, and fill the Default Symbol like this:

Now fill the Default Variable Group in the General tab like this:

Now when an FBox like this is added to a Fupla page, the led symbol will appear in Symbol
Editor. The symbol's name will be: MyFBox0.params.LedFlag. After adding an other FBox, a
MyFBox1.params.LedFlag symbol will be added to Symbol Editor and so on.

Note: If the Default Variable Group is not filled, no symbol will be added to Symbol Editor, even
if they are defined in the Static tab - Default Symbol cell.

4-20 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

And you can also have a look in the �Source� tab of the workspace, now the
macro header has one more parameter called �LED�.

In changing the state of this �LED� flag in the macro, you change the state of the LED of
the FBOX. The FBOX LED will be red if this flag is SET and green if this flag is RESET.
We can check if the operation we did, gives an overflow and if yes, we must SET the
�LED� flag with the following code:

The �ACC E� line place the accumulator to high if an error occurs or to low if everything
is normal.
The second line �JR L NoError� means that if the accumulator is low jump to the
�NoError� label otherwise execute the �SET LED� code line.

In case of an overflow, now the LED of the FBOX will be red. The only way to make it
green again is to reset the �LED� flag. Usually to do so, the best way is to add a �Reset�
button in the FBOX Adjust and View dialog window. The Adjust and View variables will
be treated in the next chapter called �FBOX Advanced�. Anyway we will finish that
FBOX and introduce you at the same time without going in the details into the Adjust
and View Variables.

4.5.3.2 Add a LED �Reset� Button

To add a button, we must add an Adjust variable in the �Parameter Editor�. The easiest
way is to use "Create adjust parameter" context menu item in Static tab.

Saia-Burgess Controls SA 4-21

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

Field Settings dialog opens automatically Fill the fields like this:

Check the parameters in
and fill the remaining fields

The first result on the FBOX face is the small black down left corner, which means if you
double click on it a dialog will appear as follows:

Description
Text

Help Text

Button caption

Value to
send when
clicked

Init Value of
the Button

Preview
area

get next or prev.
adjust item

4-22 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

So now the result is when you are online with FUPLA and an error occurs, the LED of
the FBOX will get red and you can reset that error in clicking on the �Reset Button� we
just defined:

Saia-Burgess Controls SA 4-23

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.3.3 FBOX Version Handling

The version that you have defined in the �General� tab of the workspace is translated in
the following format:

The range of the version number is 0 -> 599.999. Basically the number version is
calculated with the following formula:

VersionNumber = {[(Version * 100) + Minor] * 1000} + Internal

To check the version of the FBOX you can use the following code lines. The two first
lines have nothing to see with the version, but take it as a small tip to avoid the warning
on each variable that you didn�t use in the macro when you compile your FBOX in PG5.

 The instruction �EXITM� simply skips the remaining code and directly exit of the macro.

You can also check for example the PG5 version that your library or FBOX supports. It
exists pre-defined symbols that give you the chance to check parameters like Library
versions, PG5 version and so on. For more details on this subject, have a look at the
�SAIA Instruction List Help� under �Pre-Defined Symbols�.

4.5.3.4 Using �Block� Directives

When developing FBOX, sometimes you need that a code part is executed in a certain
block like special �XOB� or even if you develop an FBOX that must run with GRAFTEC
you might want that a special piece of code runs in a COB.

The directives �$COBSEG� and �$XOBSEG� allows you to place a part of your code in
the block of your choice.

Note: If a part of code uses an XOB for initialisation, then you
should uncheck the "Downloadable in Run" checkbox on the
"Global" tab in order to inform Fupla, that the project which is
using that FBox, cannot be downloaded in run.

For more details on this subject, have a look at the S-Edit help.

101 001

515 005

4-24 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.5.4 Using TODO and History

The TODO and History functionality of the FBOX Builder is meant to help the FBOX
developers during his working process. It is simply a list of tasks that must be done and
when those tasks are done the go in the History list.

In our example, there is two TODO items generated automatically by the FBOX Builder:

Have a look at the TODO list in clicking the tab of the workspace:

- Action Item: Description of what needs to be done.
- Priority: Level of priority that needs to be done. The levels are 1, 2 or 3.
- Module: The file path in which the TODO is.
- Comment: Sentence that belongs to this item.
- Version: Current version of the FBOX that is concern by this item.

TODO generated
by the FBOX
Builder

Saia-Burgess Controls SA 4-25

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.4.1 The TODO types

1. There is a TODO window if you click on the Todo tab in FBOX main window, it is
possible to add TODO s there using the context menu.
Note : Those TODOs will appear only in this FBOX's Todo window.

2. You can use toolbar icon to display the Todo docking window. This window shows all
Todo's of the FBOXes in the library

Use the context menu - add to add a TODO for the library.
You can check the scope under Module label

3. And it is possible to add TODOs in editor too
 This item's background is light grey.

1. Call context menu with right mouse click and choose �Insert Todo� menu:

2. You will get this line in the source editor:

 You just have to edit this line, as you need. The Item of the list will be updated.

 Tip: Double clicking an item in the list, brings you to the item in the editor.

Priority: 1..3
Action Item
Description

Comment of
the Item

FBOX version Item date
and time

Put this in
release notes

4-26 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.5.4.2 What about History items

As described in the previous lines, a TODO that is marked as DONE becomes a history
item.
To mark a TODO Item DONE, you have to right click on the TODO line in editor or in
Todo window to call context menu and select "Done".

Our example will look like this after marking the both TODO as DONE:

The lines are now marking with the tag �DONE� with the date and time of the operation.
These two items are not anymore part of the TODO list but now they are part of the
history list. You can check that out the following way:

1. Click on the �Todo� tab of the workspace:
2. To see the History list, right click in the TODO List area and choose the �Show

History� menu:

3. You get the History list as the following:

This item will appear in
release.inf file after each build

Saia-Burgess Controls SA 4-27

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.5 Create the FBOX Help Topic

As we have seen in the previous paragraph, the FBOX Builder is able to generate a
help file that belongs to the library level.

The help file has a structure that is pre-defined by the FBOX Builder, which looks like
this:

The Library and the Family level are very simple, basically the only hand you have on
them is the text you entered.

For the FBOX level a structure is pre-defined but you have quite a lot of possibility to
customize your help. Click on the �Help� tab of the workspace:

Library Level

Library overview. Text
written in the Library
properties dialog.

Family Level

Family overview. Text
written in the Family
properties dialog

A node for each
FBOX of the Family

FBOX Graphical
Interface

FBOX Parameter list with
their comments

Upper pan where you can
add Text, Link or Picture.

Lower pan where you can
add Text, Link or Picture.

Your own
keyword list.

Add a
keyword

Add a link

Add a
picture

Add a table

Set font styles

4-28 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

4.5.5.1 Add a New Picture

You can add the picture you want in the upper or lower part, simply place the cursor
where you want insert the picture and click on the button and then browse for
your picture.

4.5.5.2 Add table

You can add tables in the help too. Use button to call Table Editor

It looks like this in the editor and like this in the help:

4.5.5.3 Add a new Link

There are links that are automatically generated like the link between the FBOX and the
Family or between the Family and the Library.
But you can add your own links between what ever you want. To do so, you have to
write text you want to display as link, select it, click on the button and finally
replace the "<MacroName>" to topic ID you want link to.
The topics ID are defined as follow: IDH_Keyword
For example the link to our library looks like this: IDH_MyLibraryName

4.5.5.4 Font style buttons

Select the text you want to format and press:
for Bold for Italic for underlined for Header style

4.5.5.5 Add a new Keyword

The default keyword is the Macro Name and the FBOX Name, one of these is used by
FUPLA to call the right help topic according to the current FBOX.

But you can add some other keyword that you can use inside the help to make your
own link to it. To add a new keyword, you can directly type in the keyword edit field or
you can select a word in the help editor and then click on the button.

Saia-Burgess Controls SA 4-29

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.5.5.6 Help Files Pre-defined structure

Each level of the Help has also a pre-defined structure. In the following picture, you will
see the look of each level:

1. The Library overview:

2. The Family overview:

Library Name

Library Version

Library description

Links to the
Families of the
Library

Family Name

Family Version

Family description

Links to FBOX of
the Family

4-30 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

3. The FBOX description:

FBOX Name

Link to the FBOX Family

FBOX Name, Macro
name and version.

FBOX Graphical
interface.

Saia-Burgess Controls SA 4-31

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.6 Generate Output Files

Now that everything is ready, the FBOX functionality is defined, the help files also, we
can generate all the files needed by FUPLA to fully run our FBOX.

There are two different processes that you must start, the build of the FBOX Library
itself and the build of the help file.

You start the first process in clicking on the tool bar button:

You can start the second process in clicking on the tool bar button:

But you can also select the option �Start Help compiler after Build� (View -> Option)

Before generating the files, you should select also the �Copy the files after Build to � and
select the �Usr� directory of the PG5 library folder. If this option is not selected, you�ll
have to copy by hand all the generated files in this directory to be able to use your
FBOX in FUPLA.
The "Create Install Package" results an installable executable for installing the FBOX
library.

If the option �Disable Syntax Checking� is checked, it means that only the FBOX Builder
checks the FBOX definition; otherwise the PG5 assembler checks each FBOX.

4-32 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

So after the Build process is terminated, you get the description of what happened
during this process in the message window. You should get the following messages:

Tip: To open a file listed in the Message window just double click on it.

Finally open FUPLA, select the �User� library, the �MyFamilyName� family and the
�Math� FBOX, you get the following result:

Library
Build

Help
Build

Files copied to
target directory

Saia-Burgess Controls SA 4-33

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.7 Documentation Generator

The FBOX Builder allows you to generate the documentation that belongs to your
project. You have the choice between generating your documentation in RTF or in PDF
format.

To generate your documentation, you just have to select the �Create Documentation��
sub-menu in the main �Library� menu.

You get the following dialog:

Browse for the
location of your
documentation file.

Give a name to the
generated files.

Choose the
format of the
generated file.

4-34 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 4 I FBOX Builder I 17.01.06

After having clicked on the save button, the following dialog popped up:

Select the
documents you want
be part of your
documentation

At what level do
you want your
documentation

What FBOX must
be part of your
documentation

What FBOX documents
do you want in your
documentation

Saia-Burgess Controls SA 4-35

PG5-WorkShop I Chapter 4 I FBOX Builder I 17.01.06

4.8 Add-Tools to FBOX Builder

FBOX Builder gives you the opportunity to add your own tool in its environment. For
example you can add the Text Editor of your choice and for example configure the
extension that belongs to it.
As example, we will add S-Edit to our environment:

1) Call the configuration dialog in clicking on the following menu:

 You get the following dialog window:

2) Now when inside the FBOX Builder you double click on a �SRC� file, S-Edit
will be called to display this file.

To add more than one extension to an add-on tool, you just have to add it more than
once with different extensions but with the �Add Tool to the Tools menu� checkbox
unchecked.

Add a
new one.

Delete the
selected
one.

Path of the
added tool.

Browse to
the tool.

Parameter
list needed
when calling
the tool.

Display Tool
Name in the
menu

You can assign
file extensions
to the tool.

Saia-Burgess Controls SA 5-1

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

Contents

5 FBOX Advanced 2
5.1 Adjust and View Variables 2
5.1.1 Online View variables 4
5.1.2 Online Adjust variables 7
5.1.3 Offline Adjust variables 9
5.1.4 Button 13
5.1.5 Button with View 16
5.1.6 Alternate View 18
5.1.7 Comment 19
5.1.8 Adjust Variables Properties in Details 20
5.2 Library Information 22
5.2.1 Licensed FBOX Library Install Package 26
5.3 Multi-Language Handling 29
5.3.1 Language Editor 31
5.4 Backup/Restore Mechanism 33
5.5 Library Maintenance Handling 36
5.5.1 Active 36
5.5.2 Renamed 36
5.5.3 Removed 36
5.5.4 Replaced 36
5.5.5 Must be replaced 37
5.5.6 Obsoleted 37
5.5.7 Rename 37
5.5.8 Replace 37
5.5.9 Must Replace 37
5.6 FB Import: Tags Definition 38
5.6.1 Input and Output Description 38
5.6.2 Constant Description 38
5.6.3 Static and Dynamic Description 38
5.6.4 Example 39
5.7 FUPLA Page(s) Import 40
5.7.1 Program the functionality 40
5.7.2 Export the FUPLA Page 41
5.7.3 Import the Page(s) in the FBOX Builder 42
5.7.4 Check the Resulting FBOX 43
5.8 FBOX Builder Debug Functionality 44
5.8.1 Debug the FBOX 46

5-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5 FBOX Advanced

In this chapter you will see with an example the advanced features of the FBOX Builder,
the basics was treated in the previous chapter.
To avoid symbols naming clash with existing FBOX libraries, you can contact SAIA-
Burgess Controls Call Centre to get a list of registered symbols prefixes that you must
not use; or if you plan to develop and distribute in a large scale your own library, you
can apply at the SAIA-Burgess Call Centre to register your own prefix.

SAIA-Burgess Controls Call Centre: pcdsupport@saia-burgess.com

5.1 Adjust and View Variables

The Adjust and View variables are maybe the most complicated part of the FBOX
Development but also the most powerful feature. The FBOX Builder greatly supports
you to make full using of the huge possibilities that is given to you with the Adjust and
View Variables.
This kind of variables gives a chance to the FBOX user to modify the some FBOX
parameter before compiling the FUPLA program or even during the run of the PCD
program. When declaring an Adjust and View variable, the FBOX has a dialog window
that belongs to it. Each line of this dialog corresponds to one Adjust and View variable.
Here below you have an example of what could be on this dialog window:

An FBOX which has a dialog window attached to it has its down left corner black as
shown below it is displayed in FBOX selector too:

You can open the dialog in double clicking on the FBOX.

mailto:pcdsupport@saia-burgess.com

Saia-Burgess Controls SA 5-3

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

There are several types of adjust variables as described below:

Online View variables are static variables that can be visualised during the execution
of the PCD program. They can be Flags, Timers, Counters or Registers.

Online Adjust variables are static variables that can be modified and visualised during
the execution of the PCD program. They can be registers, flags, counters or timers.

The FBOX user when programming in FUPLA initialises Offline Adjust variables. This
kind of variables does not need any static variables because they are passed as
constant to the FBOX macro.

Button is associated to static variable; they can be registers, flags, counters or timers.
When a user presses an FBOX button, FUPLA transfers its default value to its
corresponding static variable.

Button with View is button like described in the previous lines, the only difference is
that a View belongs to it to visualise the content of the static variable that is link to the
button in question.

Alternate View variable is used to show in the view window a different variable as the
one, which was previously defined in the current adjust variable. This feature is
exclusively used today for button with view.

Comment is used in an Adjust Dialog window to comment or create sections in a list of
adjust and view variables. Double clicking on these fields gives the description
associated with the variable.

Here is how those variables are represented in the dialog window:

After this quick overview of the possibilities, it's time to go in the details of each variable
type.

5-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.1.1 Online View variables

It�s now time to make our example FBOX called �Math� a little bit more efficient. We can
for example add three View variables to have a look at the numbers of the mathematical
operation, entry numbers and the result. As reminder, our example does just an addition
of two integer numbers.
As described in the previous paragraph, an online View variable is linked to a static
variable; the best way to add an online View variable to our FBOX is to first add a static
variable and based on this one create a View variable as follow:

1. Select the �Static� tab of the �Parameter Editor�
2. Right click on the �Parameter Editor� and select the �Add� menu:

3. Enter the following lines:

4. For each of these lines, make an Adjust and View variable in right clicking on each
line and select the �Create adjust parameter�:

Saia-Burgess Controls SA 5-5

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5. Each time the Field settings dialog is opening. We must complete the properties

dialog of each View variable:

6. C
lick on the �Adjust� tab of the �Parameter Editor�

7. Complete the adjust lines as follow:

You can see that the links with the static variables are labels Nr1, Nr2 and Res that
must be the same as the static one.

 If you double click on the FBOX graphical interface, you get this dialog:

 The �LED� was defined in the previous chapter.

5-6 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

8. Now that everything is defined, you have to write the code that is going to write the

values in these static registers we have just declared. Go in the source editor, the
macro header looks like this:

Copy each number in the View variables as follows:

9. You can now check the result of your work in going in FUPLA, place your FBOX,
download it and go online with your PCD. In FUPLA you should get something as
follows:

Write the values in

the static registers

that belongs to the

View variables.

View

Variables

Saia-Burgess Controls SA 5-7

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.1.2 Online Adjust variables

In the previous paragraph called �Online View variables�, we have described how you
can link static to View variables to display them in the Adjust and View dialog window. In
this chapter do not want just to be able to visualise the variables, but also to be able to
modify their values. Of course we don�t want to modify the result so we will just adapt
the to entry numbers, in fact the modification is very simple.

1. Click on the �Adjust� tab of the �Parameter Editor�
2. Modify the lines that correspond to the two entry

numbers as follow:

3. You get the following dialog window when clicking on the FBOX graphical interface

This is it, but you could just maybe add a �Range� of accepted value in the properties
dialog of each Adjust and view Variable that you get in right clicking on the �Parameter
Editor� and choose the �Properties� menu as follow:

5-8 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

4. You have to modify the source code of your FBOX, as you remember, we add two
FBOX Inputs that was registers as entry values, to modify the entry values we must
copy the values of our Adjust variables in the Input registers. The code looks like
that:

You should also initialise the static variables Nbr1, Nbr2 and Result during the start up
of the PCD as follow:

 As you can see, the two �Inputs� of the FBOX Are useless now, we could remove them!

5. You can now check the result of your work in going in FUPLA, place your FBOX,
download it and go online with your PCD. In FUPLA you should get something as
follow:

Saia-Burgess Controls SA 5-9

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.1.3 Offline Adjust variables

This kind of variables are not linked to a static variable but are passed as constant to
the macro that belongs to the FBOX. The FBOX user has to select before the
compilation of his FUPLA program the value he wants for his parameters.

What we could do in our �Math� FBOX is to add a choice for the user. We want to add a
multiplication operation. It would be better of course to be able to do this change online
but we have already treated the online adjust variable in the previous paragraph.

1. Insert a new adjust variable, click on the �Adjust� tab,

select the line where you want the insertion, right click on the �Parameter Editor�
and finally click on the Insert menu as shown below:

 2. Enter the following line in the �Parameter Editor�:

5-10 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

2. Edit the properties of this Offline Adjust variable, right click on it and choose the

�Properties� menu

Note: If the string values are not continuous (e.g. 0, 1, 5, 6, 8) then Range field must be filled
too, based on which item should be visible.

Enter the
two possible
operations

Select the
initialisation and
the default value

Saia-Burgess Controls SA 5-11

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

 You should get the following dialog window:

3. Now the definition is finished, we must implement the modification in the source
code. The macro header looks like this:

Because the choice as to be done before the compilation, we can work with the
directive �$IF� to choose between one piece of code or another. Modify the source code
as follows:

5-12 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

4. You can now check the result of your work in going in FUPLA, place your FBOX,

download it and go online with your PCD. In FUPLA you should get something as
follows:

Saia-Burgess Controls SA 5-13

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.1.4 Button

The purpose of the button is to send a pre-defined value to a static variable that belongs
to it. The button is a type of an online variable so the first thing to do to define a button
is to add a static variable in the �Parameter Editor�. To carry on the improvement of our
�Math� FBOX, we can add a button to it to initialise every operation register, Num1,
Num2 and the Result.

1. Add a static variable, click on the �Static� tab of the

�Parameter editor�, right click in the �Parameter Editor� and choose the �Add� menu.

2. Complete the added line as follow:

3. Based on this static variable, create the belonging Adjust variable in right clicking on

the line you just added and select the �Create adjust parameter� menu.

5-14 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

4. Fill up the properties dialog of this Adjust as follows:

5. Modify the Adjust variable as follow:

6. You should get in double clicking on the FBOX graphical face the following dialog

window:

Saia-Burgess Controls SA 5-15

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

7. Now that everything is defined, we have to add the code to implement this
functionality. The macro header looks like this:

8. Modify the source code as follows:

9. You can now check the result of your work in going in FUPLA, place your FBOX,

download it and go online with your PCD. In FUPLA you should get something as
follow:

The static
variable

The Adjust
variable that
belongs to
the static.

5-16 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.1.5 Button with View

There is a possibility to add to a button a View field to visualise the value of the static
variable that belongs to the button. In our example, we can modify the button we have
created in the previous paragraph as follow:

1. Modify the Button adjust line as follows:

2. You should get the following dialog window:

3. Add a string corresponding to the �0� state of the static flag that belongs to the
Button with View. Open the properties dialog window and modify it as follows:

Saia-Burgess Controls SA 5-17

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

4. You can now check the result of your work in going in FUPLA, place your FBOX,

download it and go online with your PCD. In FUPLA you should get something as
follow:

It is quite difficult to not say impossible to see the �Initialise� state because the time of
this state is very short.

5-18 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.1.6 Alternate View

As said before, this type of Adjust And View variable is exclusively linked to a Button
with View variable. The Alternate view simply means that you do not see the value of
the static variable attached to the button but another variable of your choice. To carry on
with our �Math� example, we will change the pre-defined Button with View with an
Alternate View in which only on example purpose, we will display the first entry number
of the mathematical operation.

1. Modify the Initialise Button like follow:

2. Edit the properties of this Adjust variable the following way:

3. You can now check the result of your work in going in FUPLA, place your FBOX,
download it and go online with your PCD. In FUPLA you should get something as
follow:

Label of the variable
that you want to be
displayed

Choose the type in
which you want the
variable to be displayed

The static symbol will be
filled automatically
based on the label

Saia-Burgess Controls SA 5-19

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.1.7 Comment

The Comment variable is straightforward, it is used either to describe another variable
or just as separator. To have a better layout of our example dialog window, we want to
add a comment just after the �Operation Selector�, you have to proceed like following:

1. Insert a Comment just before the �First Number value� of the �Adjust� tab and edit the
properties dialog as follows:

3 The adjust line should look like this :

3 And you should get this dialog window:

5-20 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.1.8 Adjust Variables Properties in Details

As example we want to have a look at the properties of an �Alternate View� because it
covers everything. Maybe first thing to say is how to open the properties dialog of any
Adjust And View variables; always select the variable you want, right click on it and
choose the �Properties� menu:

 The following dialog appears if you have selected an �Alternate View� variable:

Saia-Burgess Controls SA 5-21

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

- The upper part is the preview.
- Visible: Visible or hidden on the dialog window.
- Type: Type of variables as described in the previous paragraph.
- Label: Adjust variables need a static variable. The link between this static

and the Adjust variable is the �Label�, both must have the same Label.
- Text: Comment of the variable, visible on the left side of the FBOX dialog

window
- Description: Help text that is displayed when you click on the comment

text.
- Static: The static symbol defined in static tab
- Index: The number beside the Static is the index in case the static variable

was defined as an array of variable.
- Constant for initialisation: A symbol is needed to initialise the adjust

variable.
- Cannot Locked: If this check box is not checked, this button is

displayed in the FBOX dialog window and gives the possibility to lock the
address of an FBOX static variable. Only online adjust variable can be
locked on an absolute address (offline variables are not associated to a
PCD media they are constants given to the macro at compiled time.). This
checkbox specify if an online can or cannot be locked on an absolute
address.

- Access Level: Limit write access to an online Adjust variable while the
PCD program is in running.

- Types: The format with which the value should be displayed.
- Init Value: The initial value.
- Default Value (not displayed on the above picture): If no value is defined,

the default one is taken.
- Range (not displayed on the above picture): Range of accepted value as

for example:
 10..20 range: 10 to 20.
 10, 15..20 range: 10 or 15 to 20.

10..12,15..20,0..5 range: 10 to 12 or 15 to 20 or 0 to 5.
- String List: List of values with their associated strings.

And in the alternate tab:

- Alternate Label: label of the static variable to be displayed in the Alternate
View.

- Index: The number beside the Static is the index in case the static variable
was defined as an array of variable.

- Symbol: It is filled automatically based on label
- Types: The format with which the value should be displayed.

5-22 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.2 Library Information

The FBOX Builder ease the distribution of FBOX Library, the �Library Installer� gives
you the chance to make an install package for the user of your libraries.

The Installer program needs some information to customize the installation process.
First open Library Info Window using context menu of Library manager window:

Now double click on the �General� node of the �Info View� :

Or use the appropriate toolbar icon:

You get the following dialog; select the �Install� tab:

Saia-Burgess Controls SA 5-23

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

- Unique id: Enter a unique identification string, this string is checked in all
library files when installing a new library to be sure that you are not going to
overwrite an existing library.

- Protection: Select the kind of protection you want to distribute your library.
You can distribute �Encrypted� source file, Licensed library (working with
the PG5 license mechanism) or you can distribute your library free.

- Distributed: This field is read only. It is filled based on the registered user
of FBOX Builder.

- Author: Enter the name of the Library developer, this text will appear
during the installation process.

- Logo: Click on the �Logo� button to browse to a picture that you want to be
displayed during the installation process. (BMP, ICO, EMF and WMF types
are accepted)

- Licence notification: Enter a text that you want the user to read during the
installation process.

- Supported: Select the PG5 (PG4) versions that supports your FBOX
Library. If the Installer does not find any PG5 of the selected version, an
error message dialog will be popped up; then the user has the choice to
cancel the installation or to browse for a directory to install the library
anyway.

- Install Lib: Select in which PG5 directory your library should be installed.
(STD, APP or USR USR is the default)

- Delivery: Only for SAIA internal use.

5-24 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

Now that you enter all the needed data, it is the time to create this Install package.
Basically you just have to choose the �Create Install Package� option as follow:

This way when you build you FBOX Library the Install Package will be automatically
created. The package is an executable file, its name is based on the Library Name, the
Language and the version. The Following message will be written in the �Message
Window�:

Saia-Burgess Controls SA 5-25

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

If you double click on it, the executable file will be started and you can see the link with
the �Library Properties Install� and the Install package:

The file list is simply the files that will be installed and the readme is based on the
Library description you wrote in the Library Properties Dialog.

5-26 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.2.1 Licensed FBOX Library Install Package

This feature allows you to generate a licensed install package for your own libraries. The
FBOX Builder generates a license key based on your customer name and on the Unique ID
of your library. The install package will then ask this key before installing the library.

If a licensed FBOX is used without a license, PG5 wont compile them. This mechanism is
implemented since the PG5 1.3 version.

1. Set the Protection to License in the Library Properties dialog:

Note: The distributed field is read-only, because it is taken from the PG5 user key and

this info is part of the license code generation

Build the library and generates an Install package.

Saia-Burgess Controls SA 5-27

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

2. You must now generate the key for your customer, to do so click on the �Key

Generator� menu of the main tool menu.

The following dialog comes up:

In the FBOX Library field should be filled by default if Key Generator is opened from

FBOX Builder and it should display the full path of the LIN file of your active library. The

path of this LIN file is the following:

$FBOX Builder Project Dir$\$Your Project Dir$\$Your Library Dir$_libfiles\

Key
generated

5-28 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

The customer name must be the same as the customer's PG5 key is.

The customer can find this name in the PG5 about box:

To install your Library, your customer will have to enter the generated key during the
installation process. The installer will also enter a key in the computer registry of the
customer, which will be used by PG5 to check the right to use this library.

Note: If at this dialog the user clicks on Cancel button, the application will ask to copy
the files to the appropriate directory (without registering those FBOXes). If the user uses
this way, the FBOXes will be available, projects that using this FBOXes can be opened,
the user will be able to put those FBOXes into Fupla page.
The only restriction that the project cannot be built:

Saia-Burgess Controls SA 5-29

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.3 Multi-Language Handling

An FBOX Library that you distribute must - in some cases - support more than one
language. The FBOX Builder has a �Language Editor� feature that helps you in the
handling in the multi-language library development. You can develop your FBOX Library
in one language and at the end when everything is finished, you can add one or more
new languages and begin the translation
The help file and the FBOX strings themselves are language-dependent. The language-
dependent texts are in edit boxes with light blue background (by default).
Note: To set the color of the language-dependent edit box background use the options
dialog - Environment tab:

The default language is always English but you can easily add a new one as follows:

Select a language of your choice.
Now a new language is added. All the language-dependent texts will be filled with the
texts in English.
To change from one language to another, you have to use the �Language� menu as
follows:

5-30 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

The selected language is shown in the title bar too:

Now what you want to do is to translate all the strings to one language to the other, you
have two solutions, either you select the language in which you want the translation and
then go through each string of each workspace you need to modify or the quickest way
is to use the �Language Editor�.

Important: All the languages must be added when creating a
project and should never be deleted. The Restore mechanism is
not able to restore more languages than the �Actual� project
languages number.

Saia-Burgess Controls SA 5-31

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.3.1 Language Editor

The �Language Editor� gives you a good overview of all the translation work you have to
do.
To call the language editor use the context menu of Library Manager:

In the �Language Editor� you can edit the language-dependent texts in the Library level
and in the FBox level.

Language-dependent strings in Library level:

5-32 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

And this is the FBoxes level.
At the bottom you can select the FBoxes in the Library

It is possible to export the texts (using Export button) into CSV format, and translate it in
an editor of your choice, which handles this format (e.g. Ms Excel).
During export you have to select the reference language, and the language to translate.

After the translation file is complete, use Import button and select the translated CSV
file.

When the translation is finished, you can build your library. You will have to do a library
build for each language.
But, it is possible to make a build with all possible languages using Language - .Create

all language package

Saia-Burgess Controls SA 5-33

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.4 Backup/Restore Mechanism

When you distribute your FBOX library, you have to manage different versions. The
FBOX Builder has a Backup/Restore feature that helps you to handle the versions not
only of the Library, but also Family and single FBOX. This mechanism works at every
level and it is very simple to use.
The important when you do a backup, you must increment the version number. You find
this version number for the Library in the �Library Property� window:

Tip: For the library level, you can make the version increment automatic if you choose
the �Increment Library version after Build� option:

5-34 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

For the Family level, you find it in the �Family Properties� Dialog:

And finally for the FBOX Level, you find it on its workspace:

Saia-Burgess Controls SA 5-35

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

So to make a backup of any level, you have to right click on the object you want backup
in the �Library Manager� and select the �Backup� menu:

You get the following message in the �Message Window�:

To restore any object that was backup, the process is exactly the same except that you
have the choice of what version you want restore, the FBOX Builder ask you with the
following dialog what version you want restore:

Warning: Do a backup of the current version before restoring an old one or it will

be overwritten!

Important: All the languages must be added when creating a
project and should never be deleted. The Restore mechanism
is not able to restore more languages than the �Actual� project
languages number.

5-36 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.5 Library Maintenance Handling

An FBOX Library that you distribute is always living, you might have to re-organise your
library. The maintenance handling only works at the FBOX level. The FBOX Builder
helps you to handle this kind of problems. If you have a look at the workspace of an
FBOX, in the �General� tab you will see the following:

For each FBOX you can choose the following status:

5.5.1 Active

This is the default status of an FBOX.
5.5.2 Renamed

Renamed FBOX can be used if only the name of the FBOX is changed; the interface is
identical. The new macro associated to the old FBOX can be located in a new family.
FUPLA assumes that the new macro is identical to the old one except for its name.

5.5.3 Removed

The FBOX developer can decide to remove a FBOX from the library. This must be
handled with care. FUPLA will cross out all FBOX, which were used and are not in the
library. This way the user knows immediately that one FBOX is not part of the library
anymore. Normally when the user will compile files with FBOX, which are not part of the
library, an error will be shown �FBOX not in library�. The user can manually remove this
compilation option. FUPLA remember from which family the missing FBOX come from,
and if some info help is asked for these FBOX FUPLA will look in the appropriate family
for this info.

5.5.4 Replaced

Replaced FBOX are used when an old implementation was changed (the interface of
the new macro became incompatible with the old one). The user does not have to
modify its code but FUPLA does not allow the user to add the old FBOX type. The old
FBOX still work but the FBOX developer would like to force on a long term to use the
new one.

Saia-Burgess Controls SA 5-37

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.5.5 Must be replaced

Must be replaced FBOX are used when the FBOX developer decides that no body
should use the old implementation of an FBOX. The user must modify its code; replace
the old FBOX with the new one. When displayed by FUPLA these FBOX are crossed-
out. When compiled an error warns the user �FBOX not in library.� unless the option
�error when FBOX not in library� is disabled.

5.5.6 Obsoleted

This tells FUPLA that this FBOX was removed from the library and that it was not
replaced by any FBOX. The compiler gives no error, but the user cannot any more
select this FBOX from the FBOX library.

5.5.7 Rename

This status is very similar to RENAMED the difference is you have to set here the
original macro which will renamed to this macro.

5.5.8 Replace

This status is very similar to REPLACED the difference is you have to set here the
original macro which will replaced with this macro.

5.5.9 Must Replace

This status is very similar to MUST BE REPLACED the difference is you have to set
here the original macro, which must replace with this macro.

5-38 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.6 FB Import: Tags Definition

The FB parameters are used by the FB developer to bring data in the FB, to return a
value at the end of the FB or both ways.
The FBOX Builder has no way to know what kind of use the FB will do with a parameter;
it is the reason why we have defined some tags to ease the import of an FB in the
FBOX Builder.
If those tags are not present, the parameters found during the parsing of the FB will be
present in the �Parameter Editor�, but for sure not at the right place and not with the
right name, in that case it is still possible to correct them by hand.

5.6.1 Input and Output Description

This kind of parameters will be respectively the �Input� and the �Output� of the FBOX
based on this FB. The syntax is the following:

{In/Out= [<label>]_[E][N]<type> <Comment>}

<label> : user defined label (max 9 chars)
E : edge triggered (only for inputs)
N : indexed (Stretch have to be enabled)
<type> : B : binary
 I : integer

 F : float

5.6.2 Constant Description

The constant corresponds to the field, which is directly on the FBOX.

{C= [<label>]_[N]<type><media> <Comment>}

 <label>: max. 3 characters
 N: indexed
 <type>: B : Binary (i,o,f)

I : Integer (r,t,c,k)
F : Float (r,k)
D : Data types (d,x)
P : Block types (s (=sb), p (=pb), u (=fb)

 <media>: [i] ¦ [o] ¦ [f] ¦ [r] ¦ [t] ¦ [c] ¦ [k] ¦ [d] ¦ [x] ¦ [s] ¦ [p] ¦ [u]

It is possible to define several medias: C=Block_Irk (integer type, register and constant
are accepted)

5.6.3 Static and Dynamic Description

They are not displayed on the FBOX face, they can be used as internal or init values
(example adjust and view variables are using static symbols)

{S/D= [<label>]_[<count>]<media> <Comment>}

 <label>: max. 9 characters
 <count>: 1..255 (default 1)
 <media>: F : flag

R : register
T : timer
C : counter
X : text (only for static)

Saia-Burgess Controls SA 5-39

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

D : data block (only for static)
^X : Ext text (only for static)
^D : Ext data (only for static)

Adjust value specification:

If the static symbol has an assigned adjust variable, it can be predefined with the
following syntax:

In5 DEF =5 ; {S=Tim_T} [a Tim 0 =1 {1..99999};Part 1 Year/Week (YYYWW)] comment

The adjust definition has to be in []. The �;� separates the definition and texts, the texts
can also contain the string values.

The string description:

�<text-name>: Is a string which will be placed on the left most column
of the adjust list window.

\R)<text-description>: This is the text describing in more detail the variable. It
can be accessed by double clicking the left most
column of the adjust list window. It must be preceded
with the characters \R)

\n)<text-value>: This is the text which is displayed when a value n is
given to this variable if it has used the string format. It
must be preceded with the character \n), where n is the
value which is associated with this text.�

5.6.4 Example

5-40 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.7 FUPLA Page(s) Import

The FBOX Builder gives you the chance to develop your own FBOX without writing a
single line of instruction list code. The whole functionality of your FBOX can be based
on one or several FUPLA page(s). The example described in this paragraph is based on
the �Math� FBOX developed all along this manual.
You have to keep in mind that it is not meant to be a �full program compressor�; it is not
reasonable to take an existing program of twenty pages and directly import it in the
FBOX Builder. To work correctly it should never exceed 3 pages and the maximum

nested level should not exceeds 5. By nested levels, I mean import a page, make
another page with the resulting FBOX and re-import it and so on�

5.7.1 Program the functionality

Open your FUPLA and program the following page:

The Adjust dialog of each �Math� FBOX stays unchanged that means each �Math�
FBOX does a simple addition between �Num1� and �Num2�. The results of both of them
are finally multiplied.

You can see on this page the groups �InLabel� and �OutLabel� which are used here as
tags. The FBOX Builder will read these tags during the import process to place these
parameters at the right place in the �Parameter Editor�, this works exactly the same way
as the FB import mechanism.

Other tags are defined for the FUPLA page(s) import features:

- �InLabel� tag for FBOX inputs variables
- �OutLabel� tag for FBOX outputs variables
- �StaLabel� tag for FBOX static variables
- �ConstLabel� tag for FBOX constant variable
- Not tagged means dynamic variables!

Saia-Burgess Controls SA 5-41

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.7.2 Export the FUPLA Page

After the compilation and the tests of this page, we are sure that the functionality is
correct we can export it. Select the �Export�� menu of FUPLA.

FUPLA asks you a name for the exported file and gives you the opportunity to export
one or several pages. For our example, select only the current page. FUPLA now will
create an �FXP� file that contains all the data needed to re-create the page. The FBOX
Builder used as input data the following file:

- �FXP� file which is the result of the export page

In the �import� process FBOX Builder will start FUPLA to compile the FXP file. The
result of this compilation is mainly an �FBD� file that the FBOX Builder needs to define
the behaviour of the imported page.

5-42 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.7.3 Import the Page(s) in the FBOX Builder

To create an FBOX based on exported FUPLA page(s) is quite straightforward. The
only thing you have to do is to right click on the family where you want create this new
FBOX and choose the menu �Import -> ZIP� as follow:

Then you just have to browse for your just created �FXP� file; give a name for your new
FBOX for example �MathExtend�; the FBOX Builder will create a workspace for the
FBOX.

If you have a look at the �Parameter Editor�, you will see the inputs and output we have
tagged are at the right place and you will see a whole bench of variables of three letters
in the static and adjust tab. It is your work now to move the variables from one tab to
another as needed.

You can see the schema of the imported page(s) under the tab of the
workspace; our example looks like this:

Saia-Burgess Controls SA 5-43

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

5.7.4 Check the Resulting FBOX

To be sure the import functionality has worked correctly, compile your library and place
the IMPORTED FBOX on the same page you exported, with the same entry values you
must get the same results as shown in the picture below.

5-44 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.8 FBOX Builder Debug Functionality

It is not easy to debug an FBOX; the code contained in a macro is not traceable like the
code of an FB or of a COB. The FBOX Builder debug feature helps you to trace the
code of your FBOX in putting it in a COB basically.

To use this functionality, you must create a PG5 project with an IL source file in which
you just write the statement COB/ECOB and a FUPLA file where you drop the FBOX
you want debug.

Those two files must be linked, compiled and then return in the FBOX Builder.

Open the workspace of the FBOX to be debugged, add to the �Test Project� node of the
workspace the PG5 project you have just created as shown below:

And then browse to your project.

We are ready now to start the modification process of the FUPLA generated file (FBD)
to be able to debug it. Press the �Debug FBOX� button of the main tool bar.

Saia-Burgess Controls SA 5-45

PG5-WorkShop I Chapter 5 I FBOX Builder I 17.01.06

You get the following dialog:

Click on the �OK� button, the FBOX Builder will start the PG5 to compile a first time the
project, then the FBOX Builder will modify the �FBD� and start again the PG5 to re-
compile the project with the modified files. At the end of that process, you get this
dialog:

5-46 Saia-Burgess Controls SA

PG5-WorkShop I Chapitre 5 I FBOX Builder I 17.01.06

5.8.1 Debug the FBOX

The idea of this feature is basically to put the FBOX code in a COB. This was done in
modifying the FUPLA generated file (FBD). You might ask yourself �What the source file
with the COB/ECOB statement is made for?�; the answer is very simple this file gives
you the chance to put a break points to put the PCD in trace mode. And then you can
use the �Trace into� functionality of S-Edit. You should get something as follow when
you are online and tracing into the FBOX:

As you can see, you have the �PCD� code and the source code like a normal IL
program.

Saia-Burgess Controls SA 6-1

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

Contents

6 FBOX Language Introduction 3
6.1 Forewords 3
6.2 FBOX Structure 3
6.2.1 Introduction to Macro 3
6.3 FBOX Library Files Structure 4
6.3.1 Library Information (.LIN) 5
6.3.2 Family List Order (.DFF) 7
6.3.3 FBOX Definition (.DEF) 8
6.3.4 FBOX Functionality (.LIB) 9
6.3.5 FBOX Display Text (.IDX) 10
6.3.6 FBOX Family Management (.SXG) 11
6.3.7 FBOX Help (.HLP) 12
6.4 FBOX Definition Language 13
6.4.1 Macro Name (Section Name) 14
6.4.2 Width Entry 14
6.4.3 Face Entry 14
6.4.4 FacePosi Entry 14
6.4.5 Vers Entry 14
6.4.6 Stretch Entry 15
6.4.7 GiveStretch Entry 16
6.4.8 In Entry 16
6.4.9 Out Entry 16
6.4.10 C Entry 17
6.4.11 D Entry 17
6.4.12 S Entry 18
6.4.13 The Static Variable LED 19
6.4.14 Adjust And View Variables Entry 20
6.4.15 Description of a view variable using the avn field 22
6.4.16 Description of an Online adjust variable using the avn field 23
6.4.17 Description of an Offline adjust variable using the avn field 24
6.4.18 Description of a FBOX user button using the avn field 24
6.4.19 Description of a FBOX user button with a view window 25
6.4.20 Defining an alternate view variable 25
6.4.21 Description of a comment field using the avn field 26
6.4.22 Limiting Write Access 26
6.4.23 The format string 27
6.4.24 AcceptName Entry 27
6.4.25 uName Entry 27
6.4.26 aRef Entry (Accept Reference) 27
6.4.27 Ref Entry 28
6.4.28 UComment Entry 28
6.4.29 Exist Entry 28
6.5 FBOX Texts Definition 30
6.5.1 Library section 30
6.5.2 Macro sections 30
6.5.3 Name Entry 30
6.5.4 Variables Description Entry 30
6.5.5 Example with the PCD2.W34 FBOX 31

6-2 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.6 FBOX Macro Definition 33

Saia-Burgess Controls SA 6-3

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6 FBOX Language Introduction

6.1 Forewords

This chapter is made for people who want a detailed understanding of what the FBOX
does behind the scene. The FBOX Builder automatically handles most of the points
treated in this chapter.

6.2 FBOX Structure

An FBOX is based on a macro written in IL that defines the functionality and a graphical
interface that allows an easy configuration. The �FBOX Language� which is our main
concern in this chapter defines the graphical interface of an FBOX. The functionality and
the graphical interface of an FBOX are tightly linked together therefore; a brief
introduction must be done about the macros in IL language.

6.2.1 Introduction to Macro

A macro is a sub-program that can be called from the main program. Basically the
reason why to use IL block like macro, FB or PB is to avoid writing several times the
same functionality or to improve the readability of a program.

Macros, like FBs can have parameters; the syntax, the parameters types are different
between these two blocks, but the main difference is that each macro call placed in the
program will be replaced by the appropriate code during the compilation as for the FBs,
each call will execute the same piece of code. In using macro, we spare the time to call
the FB but the memory needed by the program gets bigger for each macro call.

The reason why we use macro with FBOXES instead of using FBs is because of the
flexibility of the parameters type allowed by the macros.

The macro has the following syntax:

 MacroName macro Param_1, Param_2, � Param_n

 ;;Macro code

 �.

 Endm

The macro call has the following syntax:

 ;;IL Program

 �

 MacroName Param_1, Param_2, � Param_n

 �

The macro that belongs to an FBOX is a normal IL macro but its parameters must
match the definition of the graphical interface.

For more details about macros see the �SAIA Instructions List Help�.

6-4 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3 FBOX Library Files Structure

The information needed by FUPLA and the Compiler is distributed in several files. Each
of them has its own responsibility.

The file type can be divided in two different families, the one that belongs to the FBOX
library:

- Library information (.LIN file)
- Family list order (.DFF) file
- Library Help (.HLP)

 And the one that belongs to the FBOX family:

- FBOX Definition (.DEF)
- FBOX Functionality (.LIB)
- FBOX Display Text (.IDX)
- FBOX Family Management (.SXG)

All the �Family� files have the same name with a different extension and the �Library�
files have also the same name with a different extension.

Example:

Saia-Burgess Controls SA 6-5

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.1 Library Information (.LIN)

This file is not mandatory; it is used as information source for the Install Package tool.
The FBOX Builder generates this file based on the library information found in the
�Library Properties�, tab called �Install�.

The information contained in the file is separated in section as follow:

[ID] Identification
ID=_SAIA_Modem_SMS Unique identification for the library.

[About]
Name=Modem SMS Library Explicit name of the library.
Version=$2.1.306,21306 Version indication. String format and numeric

format.
Distributed=SAIA-Burgess
Controls

Responsible for the distribution. SAIA or third
party.

Author=Engiby, N.Bovigny Author of the library.

[Licence] Section for license note displayed before the

package is installed.
By installing the software... License not. Up to 4 text lines can be displayed by

the Engiby-Installer.

[Library] Kind of library.
Type=Fbox
Type=FB
Type=FB and Fbox

For FBOX library
For FB library
If both are supported.

Delivery=Base
Delivery=Optional
Delivery=Third Party

Delivered as Base library with PG5
Delivered as optional library
Delivered by Third party

Hierarchy=Single
Hierarchy=Main
Hierarchy=Sub

Single library without sub-libraries.
Main library having sub-libraries.
Su-library, which needs installation of a main
library.

[Main] Not yet implemented

Define the required Main library
ID=_SAIA_Modem Unique ID of the required Main lib.
Name=Modem Base Library Name of the required Main lib.
MinVers=21306 Minimum version of the required Main lib.

[PG] PGx supporting the lib.
PG4=No
PG4=Yes

Not supported by PG4
Supported by PG4

PG5_xx=No
PG5_xx=Yes

Not supported by PG5_xx
Supported by PG5_xx
xx is 10 for vers 1.0.xxx, 11 for vers 1.1.xxx and
so on

PG5Libs=Std
PG5Libs=App
PG5Libs=Usr

To be installed in Std folder
To be installed in App folder
To be installed in Usr folder

[DOC] Section for documentation files to install.

6-6 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

Readme=Generic.txt,Link_name Name of a Readme file. This files can be viewed
before to install the package.
If a link name is given (see File0.. below), a link
will also be created like for otheer files.

Group=Engiby Doc Default group name for the link installed in the
Start - Program menu of Windows.

File0=Generic.doc, GenericDoc
File1=...

List of files to install. A link is created with the link
name for file where a link name is specified.

[FileCheck] Check the files to be installed or check the

presence of the files in the folder.
File_mask=min_number,max_number
,min_size,max_size,min_date,max
_date
Example:
file*.*=4,5,10000,20000,01.01.2
001,31.12.2001
file3.obl=1, ,328, ,14.09.2001

Check that :
1) The number of files corresponding to the mask
is in the given range.
2) That the total size in bytes is in the given range.
3) That the date of each files is in the given range.
If a parameter is missing, the check for this
parameter is skipped. If a file name is given
without parameter, the file must simply exist.

[DeleteFiles] Section Files to be removed before installation.
File0=SMRProt.mac
File1=...

List of file to remove.

Saia-Burgess Controls SA 6-7

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.2 Family List Order (.DFF)

This file is not mandatory; it is used to define the order of the family list of the �FUPLA
FBOX Selector�.

The Family List Order file simply contains a list of the families in the right order. This file
has the following structure:

FBOX Family List

Libraries

FBOX Family List

[__Library] Keyword

6-8 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.3 FBOX Definition (.DEF)

This file is mandatory and it�s the key information for the graphical face of the FBOX in
FUPLA. We can say that its structure is �FBOX Oriented�; in other words this file is
separated in sections where each sections represent an FBOX. The �.DEF� file looks
like this:

The macro name is the �Keyword� to make the link between all the FBOX of the Family. For this
reason the macro name must be unique not only in the family but also among the Libraries. If
not, when opening FUPLA an error message will be displayed.

The definition part of an FBOX section is the central piece of the �FBOX Language� which will
be treated in details in this chapter.

This file does not need to be edited by the FBOX developer, the FBOX Builder generate it.

Unique Macro Name

FBOX Definition

FBOX 1

FBOX 2

FBOX 3

Saia-Burgess Controls SA 6-9

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.4 FBOX Functionality (.LIB)

This file is mandatory and defines the behaviour of an FBOX. The structure of that file is
also �FBOX Oriented�. This file looks like this:

The macro name of each FBOX must be exactly the same as the one of the definition file. As
you can see on the above picture, each macro has parameters. The definition of each FBOX
defines the parameters of the macro. The FBOX Builder generates the macros only based on
the definition information. The order of the parameters is very important; we�ll see in details in
this chapter what these parameters are linked to.

FBOX 1

FBOX 2

FBOX 3

Macro Parameters Unique Macro

Name

Macro Keyword

End Macro

Keyword

Call to a Sub-Macro

6-10 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.5 FBOX Display Text (.IDX)

This file is mandatory and defines all the texts displayed on an FBOXES. The Name of
the Family, the name of the Library help file and the name displayed in the FUPLA
�FBOX Selector� are defined in the IDX file.
Some FBOXES have an Adjust And View window; this dialog window appears when
you double click on an FBOX that has the down left corner black. This type of FBOX
allows parameters settings online or offline. The �.IDX� file contains all the texts
definition for this kind of configuration.
This file looks like this:

Like with the �.LIB� file described in the previous paragraph, the macro name of each
FBOX of the �.IDX� file must strictly correspond to the one defined in the definition file.
The FBOX Builder can generate this file.

FBOX Family Name

Library Help File

Section Keyword

FBOX 1

FBOX 2

FBOX 3

Macro Name

�FBOX Selector�

List Name

These FBOXES have no Adjust

And View variables.

Saia-Burgess Controls SA 6-11

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.6 FBOX Family Management (.SXG)

This file is not mandatory; it is used for the maintenance of an FBOX Library, especially
for the Libraries that are distributed to manage the compatibility problems between
versions. If an FBOX has been renamed, has been replaced, has been removed, has
been moved to an other library or is obsolete, this information can be found in the
�.SXG� file. The �.SXG� file of the integer family looks like:

Status Keyword

Section

This macro must

be replaced

By this macro

This macro is

replaced

By this macro

6-12 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.3.7 FBOX Help (.HLP)

The FBOX Library help file is standard Windows help file. Basically the name of this
help file must be mentioned in the �.IDX� files of the library and the keyword of each
help topic is the FBOX name found in the �.IDX�, if no name are defined the macro
name is used.

The FBOX Builder has a Help File Editor, based on the comment of each FBOX
parameter and the graphical interface, the FBOX Builder can generate the
corresponding Library help file. This automatically generated Help file looks like this:

Saia-Burgess Controls SA 6-13

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4 FBOX Definition Language

The FBOX definition language is a kind of configuration language. Here is the list of all
the possible parameter needed to define an FBOX:

[macro name]
Width= <width>

Vers= <version>
Face= <face name>

FacePosi= <left¦right¦center>
Stretch= <stretch format>
GiveStretch= <YES¦NO>
In= <in-format>
Out= <out-format>
C= <constant format>

D= <dynamic format>
S= <static format>
avn= <adjust-view format>
IsKopla= <YES¦NO>

AcceptName=[<1|2>]
uName=[<Name>]
uComment=[<Comment>]
aRef==[<1|2>]
Ref=[<Fbox Reference>]
Exist=[<Symbol>]

 The order of this list must be strictly respected.

From now on, we will take as example the FBOX �PCD2.W34� which is an FBOX for an
analogue module. You can find this FBOX in the standard library in the �Analog Module�
family.

The definition of this FBOX looks like this:

A section begins with a line containing [name] and ends just before the beginning of the
following section. The name of the section is the name located in the bracket.

Each lines contained in a section is called an entry. Each entry has a name followed by
= and a string. Between the �=� and the string absolutely no space are allowed.

6-14 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.1 Macro Name (Section Name)

The name of the section is the name of the FBOX and also the name of its macro
associated to it. Each entry in the section represents the different characteristics
associated to the FBOX.

The macro name must be unique among FBOX Libraries and must not exceed 80
characters. A good tip to avoid naming clash with the macro name is to add the name of
the company as for example: �_SaiaMacroName�.

6.4.2 Width Entry

This field defines the width of the FBOX. The width should be calculated to take in
consideration the title of the FBOX, the width of the input and output names and the
availability of constants. When designing a new FBOX this parameter should be
adjusted until you find the result expected. The range of the width is 1 to 17. This field is
mandatory.

6.4.3 Face Entry

The face parameter indicates a string that should be displayed on the FBOX. This field
is optional. If it is not used FUPLA will not display a face string on the FBOX. The max
characters number is defined by the width of the FBOX in question.

E.g. The face of the following FBOX is defined like this Face=PCD2.W34:

6.4.4 FacePosi Entry

This parameter indicates the position where FUPLA should display the face within the
FBOX. The face can be justified on the left, right or centre of the FBOX if FacePosi is
initialised with left right or centre respectively. By default the face is in the middle.

E.g.: The following FBOX is using a face justified on the left: FacePosi=left

6.4.5 Vers Entry

This field is optional. It associates a version number to the FBOX. This indication, when
provided is passed as the first parameter to the macro. The range is 0 to 65534. 65535
and -1 are used internally to indicate that there is no version number specified.

E.g. Vers=2

Saia-Burgess Controls SA 6-15

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.6 Stretch Entry

This entry is optional; if this entry is not defined the FBOX will not be stretchable. If
present it indicates to FUPLA that the FBOX is stretchable. When a FBOX is stretchable
the notion of index comes into consideration, and the inputs or outputs marked as
stretchable becomes indexed, i.e. they will be duplicated a certain amount of time
according to the stretch index chosen by the user. A stretch index of 0 indicates that an
input or output marked stretchable is displayed only once. A stretch index of 1 indicates
that an input or output marked stretchable is displayed twice...
When an input or output marked stretchable contains a label, it will automatically be
appended with an index number.

This line contains four fields with numbers. The first two fields is the minimum and
maximum stretch index at which the user can stretch the FBOX. The third field is the
increment at which an FBOX can be stretched. And the last field is the default stretch
index.

E.g. The FBOX �PCD2.W34� is stretchable with index between 0 and 7 by index
increment of 1 and is by default displayed with an index of 0. Its Stretch entry is:
Stretch=0 7 1 0.

The following shows the FBOX �PCD2.W34� stretched with a factor of 0. This is the
default stretch index for �PCD2.W34�.

The following shows the FBOX �PCD2.W34� stretched with a factor of 7. This is the
maximum value available for this FBOX.

6-16 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.7 GiveStretch Entry

This entry tells the FUPLA compiler to place in the parameter list of the macro an
indication of the stretch index. Sometimes this indication eases the macro construction
of a stretchable FBOX. This entry should only be used for a stretchable FBOX. It is not
commonly used. It should be set to YES to enable it.

E.g.: GiveStretch=YES

6.4.8 In Entry

This entry defines all the input parameters of the FBOX. If this entry is not present, the
FBOX has no input. Each field in this entry describes an input.

Here is the general form of the In entry:

 In=<input_descr> [<input_descr> ...]

 <input_descr> = [<label>]_[E][N]<type>

 <label> = max. 3 characters

 <type> = [B]^[I]^[F]

Each field is separated in two by an underscore. The first part is the optional label name
that is associated to the input. It has a maximum of three characters. It will be shown
when FUPLA displays the FBOX. If it is indexable an index number will be attached to it.
The second part is the type description of the input. It can be binary, integer, or floating-
point when marked with the letter B, I or F respectively. When the input is indexable the
type letter should be preceded by the character N. Any binary inputs can also be edge
triggered, i.e. they become active only during a rising edge is detected. When a binary
input is edge triggered the letter E precedes the type letter.

E.g. The FBOX BinInt descriptor has the following In entry: In=I_NB. It defines only one
input labelled I of type binary and it is marked indexable. The input will be marked with
the letter I and will be followed by the index number.

This is the In entry of the SRClk: In=S_B Clk_EB R_B. Which defines three inputs.
None of them is indexable. The first input is labelled S and is of type binary. The second
input is labelled Clk, it is a binary edge triggered input. The last input is labelled R and
is binary.

6.4.9 Out Entry

The O line includes the list of all the outputs coming out of a FBOX. This line is optional.
When it is not present it indicates that there are no outputs. Each field on the O line
describes an output.

 Here is the general form of the O line:

 Out= <output_descr> [<output_descr> ...]

 <output_descr> = [<label>]_[N]<type>

 <label> = max. 3 characters

 <type> = [B]^[I]^[F]

Saia-Burgess Controls SA 6-17

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

Each field is separated in two by an underscore. The first part is the optional label name
that is associated to the output. It will be shown when FUPLA displays the FBOX. If it is
indexable an index number will be attached to it. The second part is the type description
of the output. It can be binary, integer, or floating-point when marked with the letter B, I
or F respectively. When the output is indexable the character N should precede the type
letter. An output connector cannot be edge triggered.

E.g. The FBOX BinInt descriptor has the following O output line: O Out_I. It defines
only one output labelled Out of type binary. The output will be marked with Out.

6.4.10 C Entry

The C line includes the list of all the constant windows available on the FBOX. Constant
windows are user-defined parameters that are passed to the FBOX. These parameters
are absolute addresses to PCD medias or they are constants. They are also called in-
out parameters because the macro can use them in read or write mode. This line is
optional. When it is not present it indicates that there are no constant windows. Each
field on the C line describes a constant window.

 Here is the general form of the C line:

 C= <constant_descr> [<constant_descr> ...]

 <constant_descr> = [<label>]_[N]<type><media>

 <label> = max. 3 characters

 <type> = [B]^[I]^[F]^[D]^[P]

 <media> = [i] ¦ [o] ¦ [f] ¦ [r] ¦ [t] ¦ [c] ¦ [k] ¦ [d] ¦ [x] | [p] | [u] | [s]

Each field is separated in two by an underscore. The first part is the optional label name
that is associated to the constant window. It will be shown when FUPLA displays the
FBOX. If it is indexable an index number will be attached to it. The second part is the
type description of the constant. It can be binary, integer, floating-point, Data or
Program block when marked with the letter B, I, F, D, or P respectively. When a
constant window is indexable the character N should precede the type letter. A constant
window cannot be edge triggered. The media part of the constant description is an or-
mask of all the medias that the user is allowed to use in the constant window. i for input,
o for output, f for flag, r for register, t for timer, c for counter, k for constants, d for
datablock, x for texts, p for PB, u for FB or s for SB. When the medias d or x are used
the type D must be specified; when the media p, u or s are used, the type P must be
specified.

E.g. The following descriptor:

...

C=Add_Bio

...

Represents the following FBOX:

6.4.11 D Entry

The D line includes the list of all the dynamic variables that are used within the FBOX
macro. Dynamic variables are used to store intermediate results in FBOX that must
make many calculation before they provide their results. This information is only
important to the compiler so that it knows that it has to give temporary variables to the
FBOX. These variables are not initialised and a FBOX must not expect them to contain
any valid data. The same dynamic variable can be used by many FBOX, this is why

Can be I or O

6-18 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

even if an FBOX initialise a dynamic variable, it must not expect that it will contain the
same value next time it is called. Dynamic variables are owned temporarily by an
FBOX, it is own from the instance it is called until it is finish executing. Only one FBOX
can be executed at a time. This line is optional. When it is not present it indicates that
there are no dynamic variables within the FBOX.

Here is the general form of the D line:

 D= <dynamicvar_descr> [<dynamicvar_descr> ...]

 <dynamicvar_descr> = [<label>]_[<count>]<media>

 <label> = max. 3 characters

 <count> = 1..255 (default 1)

 <media> = [F]^[R]^[T]^[C]

Each field on the D line describes a dynamic variable. It is separated in two sections by
an underscore. The first section is the optional label name (maximum 3 chars.), which is
associated to the dynamic variable. It is only for means of documentation in the source
file generated at compilation.
The second part is the type description of the dynamic variable. It can be a flag a
register, a timer or a counter when marked F, R, C or T respectively. These elements
are chosen among the dynamic variables given in the resources used by FUPLA.
Dynamic variables are not indexable, but many consecutive dynamic variables can be
reserved for the FBOX simply by preceding the type description by the amount of
variables necessary.

E.g. The FBOX �PCD2.W34� has the following D entry line:

 D=Rd_2R

It defines one dynamic variable called �Rd� and it is a sequence of two consecutive
registers. When the compiler will translate the FBOX �PCD2.W34� used in FUPLA in a
source file it will reserve automatically two registers. These elements will also be shared
with other FBOXES. So the �PCD2.W34� cannot initialise them and expect to find the
same result the next time it is called.

6.4.12 S Entry

The S entry includes the list of all the static variables that are used within the FBOX
macro. Static variables are used to keep a previous result. E.g. flip-flop or counter box.
This information is important to the compiler so that it knows that it has to reserve some
variables for a specific FBOX. This line is optional. When it is not present it indicates
that there are no static variables within the FBOX.

Here is the general form of the S entry line:

 S= <staticvar_descr> [<staticvar_descr> ...]

 <staticvar_descr> = <label>_[<count>]<media>

 <label> = max. 3 characters

 <count> = 1..255 (default 1)

 <media> = [F] | [R] | [T] | [C] | [X] | [D] | [^X] | [^D]

Each field on the S line describes a static variable. It is separated in two sections by an
underscore. The first section is the optional label name (maximum 3 chars.), which is

Saia-Burgess Controls SA 6-19

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

associated to the static variable. It is only for means of documentation in the source file
generated at compilation.

The second part is the type description of the static variable. It can be a flag a register,
a timer, a counter, a text in RAM/EPROM memory, a datablock in RAM/EPROM
memory, a text in RAM memory or db in RAM memory when marked with F, R, T, C, X,

D, ^X, ^D respectively. These elements are chosen among the dynamic variables given
in the resources used by FUPLA. Static variables are not indexable, but many
consecutive static variables can be reserved for the FBOX simply by preceding the type
description by the amount of variables necessary.

E.g. The FBOX �PCD2.W34� has the following S static variable line:

 S=Fs_F LED_F

It defines two static variables. The first one is called Fs and it is a flag the second is
called LED and it is also a flag. When the compiler will translate the FBOX �PCD2.W34�
used in FUPLA to a source file it will reserve automatically two flags. These flags will not
be available for any other FBOX calls.

6.4.13 The Static Variable LED

A static variable LED has a special meaning. It is a normal static variable except that a
LED indicates automatically displayed on the top right corner of the FBOX the state of
the variable.
When a FUPLA is Online with a PCD the LED is red if the value associated to the static
variable LED is not 0, and it is green when its content is 0. When FUPLA is Offline this
LED is shown grey.

This mechanism is useful to monitor FBOX error status.

6-20 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.14 Adjust And View Variables Entry

This entry is called adjust and view entry. It defines the internal variables of an FBOX
which can be visualize or modified while the user program is being executed in a PCD.
For each variable defined an av entry is defined. They should be numbered from 0 to n.
FUPLA doesn't limit the number of av entries, but this resource consume much memory
and should not be used too extensively. Many adjust variables can be joined together
on the same line separated with the semi-colon character ';'. This saves FUPLA some
access time.

E.g.

 av0=<adjust-view format>;<adjust-view format>;<adjust-view format>;
 av1=<adjust-view format>...
 av2=<adjust-view format>
 ...

 In our example, the Adjust and View entries are the following:

av0=b Fs 0 =1 %s
av1=c c11
av2=a Ch0 =10 %s {0,10,11,20,21,22}
av3=a Ch1 =10 %s {0,10,11,20,21,22}
av4=a Ch2 =10 %s {0,10,11,20,21,22}
av5=a Ch3 =10 %s {0,10,11,20,21,22}
av6=a Ch4 =10 %s {0,10,11,20,21,22}
av7=a Ch5 =10 %s {0,10,11,20,21,22}
av8=a Ch6 =10 %s {0,10,11,20,21,22}
av9=a Ch7 =10 %s {0,10,11,20,21,22}

These entries are used by FUPLA as information to display the FBOX Dialog window;
when an FBOX use the AV feature, a black triangle cover the down left corner of the
FBOX face in FUPLA as shown in the picture bellow:

 In double clicking on this FBOX, the following dialog box will appear:

Saia-Burgess Controls SA 6-21

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

The structure of this dialog is defined by the AV entries of the definition file; but the text
displayed are defined in the �FBOX Display Texts� (.IDX file) which we will see the
details in the next paragraphs.

 The AV of the FBOX in our concern are the following:

�av0� is a button that needs a static flag (Fs 0), a default value (=1) and a format with
which the value should be displayed on the button (%s).

�av1� is a simple comment line in the dialog window which only needs a label (c11).

�av1..9� are offline Adjust variables that need a label (CHn), a default value (=10), a
format with which the value should be displayed/enter (%s) and a range of value that
can be chosen before compilation ({0,10,11,20,21,22}).

As you can see, each AV is a line of the dialog window. The button and the comment
are followed by the 8-offline variables.

The following paragraphs detail all the possibilities of the Adjust And View Variables.

6-22 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.15 Description of a view variable using the avn field

Only static variables (the one marked with the letter S) can be viewed. They can be
Flags, Timers, Counters or Registers. For each static variable that we want to view the
user must enter the following entry at the end of the FBOX definition:

 avn=v <label>[<index>][<%format>][\nabs]

avn = Is the name of the entry. A number between 0 and n should replace
the character n. The first entry av should be numbered 0 the following
ones should be numbered successively.

<label> = max. 3 characters that correspond to a static variable previously
defined.

<index> = an optional index can be appended to the label. It identifies one
element within an array of static variables.

<%format> = the format with which the value should be displayed.
<\nabs> = specifies that the variable cannot be locked by the user.

The format can be one of the following:
 %s string format.
 %d decimal format. This is the default format.
 %x hexadecimal format.
 %o octal format.
 %f floating point format.
 %[0..9]p decimal floating point format. The digit indicates the position of the

decimal point. The default is 0.
 %[0]D this format converts an integer valueYYMMDD into DD/MM/YY.
 %1D this format converts an integer valueMMDD into DD/MM.
 %2D this format converts an integer value �YYYYMMDD into DD/MM/YYYY.
 %[0]H this format converts an integer value ...HHMMSS into HH:MM:SS.
 %1H this format converts an integer value ...HHMM into HH:MM.
 %2H this format converts an integer value which represents seconds and

converts it in the format HH:MM:SS. The Hours can be up to 99. This format
can be used to represent delays before or delta of time between states.

 %t,%[0..3]t this format is used for entering special modem strings.
%0t - actual format of modem string
%1t - needed for GSM modems. Like %0t except ! replaced by +
%2t,%3t � length is 2*8, 3*8 (not yet implemented)

 %0i IP address in dot notation
 %[1..5]e EIB formats for ETS2

%1e � Full EIB address <main group 0..15><middle 0..7><sub 0..255>
%2e � main group only 12/-/-
%3e � middle and sub group -/4/123
%4e � main and middle 12/4/-
%5e � sub only -/-/123

 The modem format %t
This format is used to enter some Modem specific strings and embed
them into register values. The format is very simple and is the following:

CODE DISPLAY Comment
0-9 0-9 Number to dial
0AH *
0BH #
0CH W Commande �Wait for dial Tone�

Saia-Burgess Controls SA 6-23

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

0DH ,
0EH !
0FH Blank Space, authorized before numbers

and between numbers.

The modem library will contain two fields of 8 characters for the
telephon number. Example:

Tf number prefix � 0W 037� => value in register: FF0CF037
Tf number �75 39 88� ===> value in register: 75F39F88

6.4.16 Description of an Online adjust variable using the avn field

Online adjust variables are internal static variables of a macro which can be modified
and visualised by the user. Online variables are associated with an internal static
variable; they can be registers, flags, counters or timers.

When FUPLA is Online with a PCD it will be able to modify their value on user request.
The value is then transferred in its corresponding static variable.

Only Online variables (the one associated with an internal static variable in the S entry)
can be adjusted in real time. They can be Flags, Timers, Counters or Registers.

With the adjustable Online variable we give the user a chance to view and modify the
content of a given FBOX internal variable. For these variables an adjust edit window
and an actual set value window are displayed in the adjust list window. The adjust edit
window contains the value which the user wants to pass to the internal variable. The

 button on the left order FUPLA to transfer the default value in the adjust edit
window. The button on the right of the adjust edit window order FUPLA to transfer
the value from the adjust edit window in the corresponding variable in the PLC. The
Actual value window shows the actual content of the PLC variable when possible (when
in Online).

If we are Online: the button on the left of the adjust edit window will be enable (to
show that we can modify the effective value) and the right window will contain the
effective value.

If we are Offline: the button on the left of the adjust edit window will be disable (to
show that we can't modify the effective value) and the right window will contain --------.

The following describes the syntax used for defining an Online adjust variable:

 avn=a <label>[<index>][<%format>] [<=init>] [{<range>}][\nabs][\wax=wacces]

avn = Is the name of the entry. A number between 0 and n should replace
the character n. The first entry av should be numbered 0 the following
ones should be numbered successively.

<label> = max. 3 characters that correspond to a static variable previously
defined.

<index> = an optional index can be appended to the label. It identifies one
element within an array of static variables.

<%format> = the format with which the value should be displayed and how they
should be entered by the user. It is the same as the format described
in section Description of a view variable using the avn field.

6-24 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

<=init> = initial value. It must be definable for each parameter independently
specially for arrays like x_10R. Default is 0 if no range is given else
init is at the middle of the range. The init value can be entered with
decimal or with hexadecimal format using 0X or 0x preceding the
number. Example the hexadecimal value FFF can be entered like this
=0xfff.

 The init segment has the following syntax: DefaultValue[:SetValue].
When the SetValue is not specified it is assigned with the value of the
default value. The set value is the value which is placed in the adjust
field the first time. The default value is the value which is placed in the
adjust field when the user presses the set default button.

<range> = The range is taken without the format attribute. This parameter is
optional.

\nabs = specifies that the variable cannot be locked by the user.

\wax=waccess This defines the write access level needed to modify any value in the
PCD. For more details see section Limiting Write Access.

The format of the range is the following:

<range> = <subrange>[,<range>]
<subrange> = value[..value]

E.g. {10..20} range: 10 to 20.
 {10, 15..20} range: 10 or 15 to 20.
 {10..12,15..20,0..5} range: 10 to 12 or 15 to 20 or 0 to 5.

6.4.17 Description of an Offline adjust variable using the avn field

These are constants that are passed to a macro (they are passed directly, they are not
passed via a register or a flag like the Online variables). They are used for initialising
initial parameters in the FBOX. They use up less dynamic variables and they are not
fragile to a bad initialisation like Online parameters are. They can only be defined
Offline, and the user must recompile and re download his program.

For these variables only an adjust edit window is available. The adjust edit window is
displayed in the adjust list window. The adjust edit window contains the value which will
be pass to the macro the next time the program is recompiled. The button on the
left order FUPLA to transfer the default value in the adjust edit window.

Adjustable Offline variables, gives the user a chance to view and modify the constant
which is passed to a macro. If the user modifies an Offline variable the editor will
suggest to him to re-compile, since its modification will only be effective if re-compiled.

The syntax of an Offline adjust variable is the same as the Online variable, except that
the label must not correspond to any static variables previously defined in the S entry.

6.4.18 Description of a FBOX user button using the avn field

FBOX user buttons are associated to internal static variables of an FBOX; they can be
registers, flags, counters or timers. When a user presses a FBOX button, FUPLA
transfer its default value to its corresponding internal static variable. This can be done
only when FUPLA is Online with a PCD, otherwise the button is disabled. This is a very
convenient way to set or reset parameters or algorithm in an FBOX.

The following describes the syntax used for defining an FBOX user button:

Saia-Burgess Controls SA 6-25

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

 avn=b <label>[<index>][<%format>] [<=init>][\nabs] [\wax=waccess]

avn = Is the name of the entry. A number between 0 and n should replace
the character n. The first entry av should be numbered 0 the following
ones should be numbered successively.

<label> = max. 3 characters that correspond to a static variable previously
defined.

<index> = an optional index can be appended to the label. It identifies one
element within an array of static variables.

<%format> = the format with which the value should be displayed on the button. It
is the same as the format described in section 6.4.15 Description of

a view variable using the avn field.
<=init> = initial value. Default is 0. This is the value that is shown on the button.

The init value can be entered with decimal or with hexadecimal format
using 0X or 0x preceding the number. Example the hexadecimal value
FFF can be entered like this =0xfff.

\nabs = specifies that the variable cannot be locked by the user.
\wax=waccess This defines the write access level needed to modify any value in the

PCD. For more details see section Limiting Write Access.

6.4.19 Description of a FBOX user button with a view window

This is a button like defined in section Description of an FBOX user button using the

avn field. The only difference is that a view window can also be associated to it.

The following describes the syntax used for defining a FBOX user button with a view
window:

 avn=bv <label>[<index>][<%format>] [<=init>][\nabs][\wax=waccess]

The view window will show the content of the variable associated to the button. The
user can also view an alternate view of another variable see section Defining an

alternate view variable.

6.4.20 Defining an alternate view variable

This feature is used to show in the view window an alternate variable as the one that
was previously defined in the current adjust variable. This feature is exclusively used
today for button with view; see section Description of an FBOX user button with view

window.
The following describes the syntax used for defining a FBOX user button with an
alternate view window:

 avn=bv <label>[<index>][<%format>] [<=init>][\nabs][\wax=waccess] [\v�]

Where \v� is the same syntax as described in section Description of a view variable

using avn field, preceded by a backslash �\�.

When the user locks the absolute address it will lock the alternate view variable not the
button variable.

The text column is always the one associated with the button not the one associated to
the alternate view.

6-26 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.21 Description of a comment field using the avn field

Comments are used in an Adjust Dialog window to comment or create sections in a list
of adjust and view variables. Double clicking on these fields gives the description
associated with the variable.

The following describes the syntax used for defining comment in an adjust dialog
window:

 avn=c <label>

The syntax of an Offline adjust variable is the same as the Online variable, except that
the label must not correspond to any static variables previously defined in the S entry.

avn = Is the name of the entry. A number between 0 and n should replace
the character n. The first entry av should be numbered 0 the following
ones should be numbered successively.

<label> = max. 3 characters that must not correspond to any static variables
previously defined in the S entry.

The comment and the description of this line is located in the .IDX file.

6.4.22 Limiting Write Access

It is maybe required to limit write access to some memory in the PCD while the PCD
program is in run. Previous implementation of the adjust variable allowed anyone to
modify the content of the PCD memory by using the adjust window of a FBOX. Now
with the new \wax= keyword the FBOX designer can set a level of protection.

We store in the file {appsdir}\pg4limit.ini the current write access level. This is stored in
the section [Security] entry WriteAccessLevel=. The value allowed for the current
write access is between 1 and 99. If this entry is not defined a default of 50 is taken. For
mean of conveniences we can also set this variable with a lower value by setting the
variable WriteAccessLevel found in the registry in the section
[HKEY_CURRENT_USER\Software\SAIA-Burgess\PG4\2.0\SFUP32\Security].
The maximum WriteAccessLevel is the one defined in the pg4limit.ini file - this file is
protected therefore it does not become a back door access.

The keyword \wax= can be used on any adjust variable line. It only make sense to use
it for variables which can be modified by a button, i.e.: it makes no sense to use \was=
on a comment an offline variable or a view only variable.

When the write access level defined by the \wax= directive is lower than the current one
defined in the file spg4.ini than any button giving the possibility to write in the PCD
variable is removed from the adjust window. The range for the \wax= directive is
between 1 and 99. When it is not used the write access level of the adjust variable is set
to 0. When an adjust variable has a write access equal to 0 it means that there are no
restrictions.

Saia-Burgess Controls SA 6-27

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.23 The format string

Adjust variables which use the string format will be provided with a pick list
(COMBOBOX) fill with choices that are available for the adjustment of the variable.
These adjust variable must absolutely provide a range on there avn entry line definition.

6.4.24 AcceptName Entry

Values: AP_NOT_USED = 0, AP_OPTIONAL = 1, AP_REQUIRED = 2,
AP_USERDEFINED = 3,AP_DISABLED = 4

This entry informs FUPLA that the macro was designed to take advantage of this
mechanism, and it is passed in the parameter list. If this entry is set to 1 the user can
enter a name if he wants, if he does not FUPLA will generate one for him. If
AcceptName is set to 2 then FUPLA will notify the user if he does not set the user
name. If AcceptName is set to 1 or 2 the user name will be passed to the macro. If
AcceptName is not defined then FUPLA does not pass the FBOX user name to the
macro.
If AcceptName is 3 the user can define a symbol name, and this name as group name
will be used for internal variables. The name must be unique in the module.
AcceptName = 4 means that the user cannot specify the name.

6.4.25 uName Entry

This entry is used to memorise or to specify a default user name. This should never be
bigger than 80 characters. Only valid symbols accepted by the assembler or positive
numbers will be accepted (AP_OPTIONAL, AP_REQUIRED, AP_NOT_USED).

6.4.26 aRef Entry (Accept Reference)

This entry informs FUPLA that the macro was designed to take advantage of this
mechanism, and it is passed in the parameter list. If the entry aRef is set to 1 the user
can specify a FBOX Reference if he wants, if he does not FUPLA will generate one for
him. By default FUPLA generates __NO_FBOX_REFERENCE__. If aRef is set to 2
then FUPLA will notify the user if he does not set the FBOX reference. If aRef is set to 1
or 2 the user name will be passed to the macro. If aRef is not defined then FUPLA does
not pass the FBOX reference to the macro.

6-28 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.4.27 Ref Entry

This entry is used to memorise or to specify a default FBOX Reference. This should
never be bigger than 12 characters. Only valid symbols accepted by the assembler or
positive numbers will be accepted.

The user can specify a new FBOX reference from the dialog box shown below. This
dialog box is accessible from the menu FBOX Properties� by pressing the right
mouse button on the FBOX desired.

6.4.28 UComment Entry

This entry is used to memorise the user comment entered by the user for a specific
FBOX. This is normally not used by the FBOX designer. Nevertheless it can be used to
define a default comment. The maximum characters of this string are 80.

6.4.29 Exist Entry

This is a directive which tells FUPLA to define a symbol made of the macro name or the
symbol name if specified in the exist directive. This symbol is then equated to the
number of time the FBOX was used. This symbol can than be used by another FBOX to
verify if an FBOX is in use or not.

The syntax is:

Exist=[Symbol]

These symbols are placed into a group called __FBOX_IN_USE__ in the file .inc to limit
collision of symbols.

NOTE: The symbol should not be used to define a common name to a group of different
FBOX. We use it to define a common name for different version of the same FBOX.

The compiler will fill the file .inc with a section group __FBOX_IN_USE__. For example:

$GROUP __FBOX_IN_USE__
_fbox1 EQU 2
_fbox2 EQU 1
$ENDGROUP

The compiler detected in this example 2 occurrences of FBOX _fbox1 and 1 occurrence
of FBOX _fbox2. Other macro can access these symbols with the following syntax:

$ifdef __FBOX_IN_USE__. _fbox1

Saia-Burgess Controls SA 6-29

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

See also the documentation on assembler directive $GROUP.

6-30 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.5 FBOX Texts Definition

The �.IDX� file contains all the strings associated to the FBOX interface. It contains:
 Library name that appears in the family FBOX list.
 FBOX name that appears in the FBOX list.
 Name and description of each avn variables.
 Strings used for translating the string format.

There should be for each .DEF file a corresponding .IDX file. .IDX files have been design to
ease the translation of an FBOX in an other language. If the .IDX file is corrupted the FBOX will
still behave properly. The general format of the .IDX file is the following:

 [__Library]
 Name=Name of library
 ...

[macro name 1]
Name=Name of FBOX
LBL= <adjust-view idx format>
LED= <adjust-view idx format>
REG 0= <adjust-view idx format>
...

[macro name 2]
...

6.5.1 Library section

The first section of the .IDX file must be named __Library (two underscore preceding Library). In
this section FUPLA finds the name of the library in the entry Name. This is the name that is
displayed in the list of libraries.

6.5.2 Macro sections

Each macro has a corresponding section in the .IDX file of there families. The name of each
section is the same as the one defined in the corresponding .DEF file. Each one of these
sections contains a Name entry a Help entry and an entry associated to each variable that were
associated to the avn section in its corresponding .DEF file.

6.5.3 Name Entry

The entry Name= defines the name of the FBOX. This name will appear in the FBOX list box.

6.5.4 Variables Description Entry

A variable description entry gives a name and a description to an avn variable. It can also
contain the string used for translating the string format. The name of the entry is the name of the
label used in the .DEF file in the avn entry plus optionally the index that was used.

The format of a Variable description entry is the following:
 <LBL> [<index>]=[<text-name>][\R)<text-description>][\n)<text-value0>]

<LBL> = this is the label that was used in the .DEF file to identify the
variable associated with the avn variable.

<index> = This parameter must be used if it was used in the avn entry of the
corresponding .DEF file.

<text-name> = Is a string which will be placed on the left most column of the
adjust list window.

Saia-Burgess Controls SA 6-31

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

\R)<text-description> = This is the text describing in more detail the variable. It can be
accessed by double clicking the left most column of the adjust list
window. It must be preceded with the characters \R)

\n)<text-valuen> = This is the text which is displayed when a value n is given to
this variable if it has used the string format. It must be preceded with the character \n),

where n is the value which is associated with this text.

6.5.5 Example with the PCD2.W34 FBOX

To understand exactly what we have to do in the .IDX file, the best way is to put side by
side the .DEF and the .IDX as follow:

[_anad2w34]
Width=15
Face=PCD2.W34

Vers=2
Stretch=0 7 1 0
GiveStretch=YES

Out=i_NI
C=Add_Bio
D=Rd_2R

S=Fs_F LED_F
av0=b Fs 0 =1 %s
av1=c c11

av2=a Ch0 =10 %s {0,10,11,20,21,22}
av3=a Ch1 =10 %s {0,10,11,20,21,22}
av4=a Ch2 =10 %s {0,10,11,20,21,22}

av5=a Ch3 =10 %s {0,10,11,20,21,22}
av6=a Ch4 =10 %s {0,10,11,20,21,22}
av7=a Ch5 =10 %s {0,10,11,20,21,22}

av8=a Ch6 =10 %s {0,10,11,20,21,22}
av9=a Ch7 =10 %s {0,10,11,20,21,22}

[_anad2w34]
Name=PCD2.W34
Fs 0= Error\1)Acknowledge\R)Reset the error LED

c11=----[Configuration channel 0 to 7]----
Ch0=Ch 0 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S
Ch1=Ch 1 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S

Ch2=Ch 2 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S
Ch3=Ch 3 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S
Ch4=Ch 4 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S

Ch5=Ch 5 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S
Ch6=Ch 6 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S
Ch7=Ch 7 / Mode or sensor type \0)1:1 \10)mV \11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S

6-32 Saia-Burgess Controls SA

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

av0:
This entry is a button (b); its responsibility is to send its default value to its attached flag
when it is pushed down.

- The definition line �S=Fs_F �� ask FUPLA to reserve a flag especially for
that FBOX (static).

- The definition line �av0=b Fs 0 =1 %s� define a button and link its action to

the Fs flag (�0� is the media index in the case Fs is the base address of an
array of flags. In this case the �0� is not needed). The default value of the
attached flag is 1 (=1) and finally the value of the flag can be read on the
button in a string format (%s). In our case, the caption of the button could
have another string when the flag is 0.

- The string definition line �Fs 0=Error \1)Acknowledge \R)Reset the error

LED� is the strings that fully describe the button. �Error� is the comment
situated on the left of the button, �Acknowledge� is the caption of the button
and the �\R)Reset the error� is the help string that is popped up when
double clicking on the comment.

av1:

This entry is a simple comment (c) that will be displayed in the second line of the FBOX
Adjust and View dialog window.

- The definition line �av1=c c11� simply define the second line as comment
and the comment label that is the link with the string definition is �c11�.

- The string definition line �c11=----[Configuration channel 0 to 7]----� define

the effective text that will be displayed in the FBOX dialog window.

av2�av9:

These entries are offline adjust variables (a); the �a� is also used for online variable, the
only difference is that for the off line�s, the variables don�t correspond to PCD media but
are passed directly as constant. The user before compilation of the FUPLA file must
define Offline variables.

- The definition line �av2=a Ch0 =10 %s {0,10,11,20,21,22}� define �Ch0� as
the label of the av, the default value �=10�, the display value format to be a
string (%s) and the range of possible values ({0,10,11,20,21,22}). The
FBOX dialog window will have a combo box in which the user can choose
the value he wants.

- The string definition line �Ch0=Ch 0 / Mode or sensor type \0)1:1 \10)mV

\11)uA \20)Pt 1000 \21)Ni 1000 \22)Ni 1000 L&S� define the description text
of the av (�Ch x / Mode or sensor type�) and each possible choice with their
values (��\21)Ni 1000��).

Saia-Burgess Controls SA 6-33

PG5-WorkShop I Chapter 6 I FBOX Builder I 17.01.06

6.6 FBOX Macro Definition

The �.LIB� file contains a macro for each FBOX defined in the �.DEF� file. To understand
exactly the macro that belongs to our example FBOX we have to compare the definition
and the macro header of the �PCD2.W34� FBOX.

[_anad2w34]
Width=15

Face=PCD2.W34
Vers=2
Stretch=0 7 1 0

GiveStretch=YES
Out=i_NI
C=Add_Bio

D=Rd_2R
S=Fs_F LED_F
av0=b Fs 0 =1 %s

av1=c c11
av2=a Ch0 =10 %s {0,10,11,20,21,22}
av3=a Ch1 =10 %s {0,10,11,20,21,22}

av4=a Ch2 =10 %s {0,10,11,20,21,22}
av5=a Ch3 =10 %s {0,10,11,20,21,22}
av6=a Ch4 =10 %s {0,10,11,20,21,22}
av7=a Ch5 =10 %s {0,10,11,20,21,22}
av8=a Ch6 =10 %s {0,10,11,20,21,22}
av9=a Ch7 =10 %s {0,10,11,20,21,22}

_anad2w34 macro vers,
 in0,in1,in2,in3, ;;output FBox

 in4,in5,in6,in7,
 addr, ;;constant
 Rd, ;;Dynamics

 Fs,led, ;;static
 Quit, ;;Quittance error button
 Ch_0,Ch_1,Ch_2,Ch_3, ;;Channel type choice register

 Ch_4,Ch_5,Ch_6,Ch_7,
 index ;;stretch index

�

endm

You can see in the above example that the order is very important because only this
order makes the link possible between the macro and the FBOX definition. The symbols
used as macro parameters are not important, of course they must comply to the symbol
syntax.

