Réseaux LonWORKS® avec Saia PCD®
Table des matières

0 Table de matières

0.1 Historique du document ... 0-5
0.2 Marques déposées ... 0-5

1 Philosophie et éléments de LON

1.1 La philosophie du LON ... 1-1
1.2 Les quatre éléments du LON ... 1-3
1.3 Le protocole LonTalk® ... 1-4

1.3.1 Structure fondamentale .. 1-4

1.3.1.1 Processus de transmission .. 1-4

1.3.1.2 Sécurité des données .. 1-5

1.3.1.3 Priorités .. 1-6

1.3.2 Qu'est-ce que le CSMA? .. 1-7

1.3.3 Les couches de l' OSI ... 1-8

1.3.4 L'assignation d'adresse .. 1-9

1.3.4.1 Domaine .. 1-9

1.3.4.2 Canal .. 1-10

1.3.4.3 Sous-réseau .. 1-10

1.3.4.4 Nœud ... 1-10

1.3.4.5 Groupe ... 1-10

1.3.5 Modes d'adressage .. 1-11

1.3.6 Les messages explicites .. 1-11

1.3.7 Variables réseau .. 1-12

1.3.8 La configuration et la gestion du réseau 1-12

1.4 Les nœuds LonWorks® ... 1-14

1.4.1 Les nœuds basés sur NEURON® .. 1-14

1.4.1.1 Connexions d’E/S de la puce ... 1-15

1.4.1.2 Firmware, EEPROM, PROM, Flash-PROM, RAM 1-16

1.4.1.3 Broche de service ... 1-17

1.4.1.4 Programmation en Neuron C .. 1-18

1.4.1.1 Possibilités de configuration ... 1-18

1.4.2 Processeur monopuce 3120 ... 1-19

1.4.3 Processeur à puces multiples 3150 ... 1-19

1.4.4 MIP (Micro Processor Interface Program) 1-20

1.4.5 Nœud hôte (NGR, nœud de gestion réseau) 1-20

1.5 Les transmetteurs LonWorks® ... 1-21

1.5.1 Paire torsadée TP 78 ... 1-21

1.5.2 Topologie libre FTT-10 ... 1-22

1.5.3 RS-485 .. 1-22

1.5.4 Link Power .. 1-23

1.5.5 Courant porteur .. 1-23

1.5.6 Autres transmetteurs ... 1-24

1.6 Les outils LonWorks® ... 1-25

1.6.1 Outils d’installation ... 1-26
Table des matières

2 La norme LonMark®
- 2.1 La couche physique (couche 1) ... 2-1
- 2.2 Les couches 2 à 6 .. 2-1
- 2.3 La couche application (couche 7) .. 2-1
- 2.4 Les objets LonMark® ... 2-3
 - 2.4.1 La structure d'un objet LonMark® ... 2-3
 - 2.4.2 L'objet nœud .. 2-4
 - 2.4.3 Les objets capteurs ... 2-5
 - 2.4.4 Les objets actionneurs .. 2-7
 - 2.4.5 L'objet contrôleur ... 2-8
 - 2.4.6 Les profils de fonction ... 2-10

3 Les éléments constitutifs du réseau
- 3.1 Les nœuds (nodes) .. 3-1
- 3.2 Les éléments constitutifs de l'organisation du réseau 3-1
 - 3.2.1 Le répéteur .. 3-1
 - 3.2.2 Le pont .. 3-1
 - 3.2.3 Le routeur d'apprentissage ... 3-2
 - 3.2.4 Le routeur configuré ... 3-2
 - 3.2.5 Pourquoi utiliser un routeur ? .. 3-2
- 3.3 Limites du système et astuces de contournement 3-3
 - 3.3.1 Les limites du domaine .. 3-3
 - 3.3.2 Limitation du nombre de groupes ... 3-3
 - 3.3.3 Limitation du nombre de participants au canal 3-4
 - 3.3.4 Limitation du nombre de tables d’adressage 3-4

4 Appareils Saia PCD® pour réseaux LON
- 4.1 LON Hostmodul PCD7.F80x ... 4-1
 - 4.1.1 Modules d'interface LON disponibles 4-2
 - 4.1.2 Versions du matériel et du firmware .. 4-2
 - 4.1.3 Contrôleur LON .. 4-3
 - 4.1.4 Interface de bus LON ... 4-3
 - 4.1.5 Mode CA/CC ... 4-3
 - 4.1.6 Spécification du transmetteur .. 4-3
 - 4.1.7 Raccordement de l'interface LON au PCD1/2 4-4
 - 4.1.8 Raccordement de l'interface RS-485 au PCD2 4-5
 - 4.1.9 Résistances de terminaison .. 4-5
 - 4.1.10 Connecteurs pour LON .. 4-6
- 4.2 Mode de fonctionnement ... 4-6
 - 4.2.1 Signification des LED ... 4-6
 - 4.2.2 Comportement de la LED de service 4-7
 - 4.2.3 Comportement de la LED d'état .. 4-8

5 Planification et installation d'un réseau LON
6 Le configurateur LON
6.1 Généralités ... 6-1
6.2 Processus de configuration du LON ... 6-1
6.3 Appel et description du configurateur LON .. 6-2
6.3.1 Ouverture d'un nouveau projet ... 6-2
6.3.2 Structure de l'écran principal ... 6-3
6.4 Les menus du configurateur LON ... 6-8
6.4.1 Structure du sous-menu « Network » (réseau) ... 6-8
6.4.2 Structure du sous-menu « Edit » (édition) ... 6-9
6.4.3 Structure du sous-menu « View » (affichage) ... 6-10
6.4.4 Structure du sous-menu « Library » (bibliothèque) .. 6-11
6.4.5 Structure du sous-menu « Project » (projet) ... 6-11
6.4.6 Structure du sous-menu « Online » .. 6-12
6.4.7 Structure du sous-menu « Window » (Fenêtre) ... 6-12
6.4.8 Structure du sous-menu « Help » (Aide) ... 6-13

7 Programmation dans le programme utilisateur
7.1 Aperçu de la bibliothèque LON .. 7-1
7.2 Rubriques ... 7-2
7.2.1 Saia PG5® LON FBox et Saia PG5® LON configurateur 7-2
7.2.2 Liste de SNVT ... 7-3
7.2.3 Le mécanisme Auto Send ... 7-5
7.3 Saia PG5® FBox SND et RCV .. 7-8
7.3.1 Binaire ... 7-8
7.3.1.1 RCV Binaire ... 7-8
7.3.1.2 RCV Binaire Rcv .. 7-8
7.3.1.3 RCV Binaire + Valeur Rcv .. 7-8
7.3.1.4 RCV Binaire Code ... 7-9
7.3.1.5 SEND Binaire .. 7-10
7.3.1.6 SEND Binaire Snd .. 7-10
7.3.1.7 SEND Binaire Auto ... 7-10
7.3.1.8 SEND Binaire + Valeur Auto .. 7-10
7.3.1.9 SEND Code Binaire Auto ... 7-11
7.3.2 Entier ... 7-13
7.3.2.1 RCV Entier .. 7-13
7.3.2.2 RCV Entier Rcv ... 7-14
7.3.2.3 SEND Entier .. 7-15
7.3.2.4 SEND Entier Snd .. 7-16
7.3.2.5 SEND Entier Auto .. 7-17
7.3.3 Valeurs de consignes de température .. 7-18
7.3.3.1 RCV Consignes Temp Rcv .. 7-18
7.3.3.2 SEND Consignes Temp Snd ... 7-18
7.3.4 Virgule flottante .. 7-19
7.3.4.1 RCV Virgule flottante .. 7-19
7.3.4.2 RCV Virgule flottante Rcv .. 7-19
7.3.4.3 SEND Virgule flottante ... 7-20
7.3.4.4 SEND Virgule flottante Snd ... 7-20
7.3.4.5 SEND Virgule flottante Auto ... 7-21
Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.5</td>
<td>Date et heure ..</td>
</tr>
<tr>
<td>7.3.5.1</td>
<td>RCV Date et Heure ..</td>
</tr>
<tr>
<td>7.3.5.2</td>
<td>SEND Date et Heure ..</td>
</tr>
<tr>
<td>7.3.6</td>
<td>État ..</td>
</tr>
<tr>
<td>7.3.6.1</td>
<td>RCV État ..</td>
</tr>
<tr>
<td>7.3.6.2</td>
<td>SEND État ..</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Alarme ..</td>
</tr>
<tr>
<td>7.3.7.1</td>
<td>RCV Alarme ..</td>
</tr>
<tr>
<td>7.3.7.2</td>
<td>SEND Alarme ..</td>
</tr>
<tr>
<td>7.3.8</td>
<td>Objet ..</td>
</tr>
<tr>
<td>7.3.8.1</td>
<td>RCV État objet ...</td>
</tr>
<tr>
<td>7.3.8.2</td>
<td>RCV Demande Objet ..</td>
</tr>
<tr>
<td>7.3.9</td>
<td>Carte magnétique ..</td>
</tr>
<tr>
<td>7.3.9.1</td>
<td>RCV Carte magnétique ..</td>
</tr>
<tr>
<td>7.3.9.2</td>
<td>SEND Carte magnétique ..</td>
</tr>
<tr>
<td>7.3.10</td>
<td>Paramètres ..</td>
</tr>
<tr>
<td>7.3.10.1</td>
<td>RCV Paramètres ..</td>
</tr>
<tr>
<td>7.3.10.2</td>
<td>SEND Paramètres ..</td>
</tr>
<tr>
<td>7.3.11</td>
<td>Autres Saia PG5® FBox ...</td>
</tr>
<tr>
<td>7.3.11.1</td>
<td>Diagnostic LON ...</td>
</tr>
<tr>
<td>7.3.11.2</td>
<td>Diagnostic de SNVT ..</td>
</tr>
</tbody>
</table>

8 Mise en service et débogage

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Messages d'historique ..</td>
</tr>
<tr>
<td>8.2</td>
<td>Compléments d'informations concernant LON avec Saia PCD®</td>
</tr>
</tbody>
</table>

9 Définitions, abréviations et bibliographie

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Définitions ..</td>
</tr>
<tr>
<td>9.2</td>
<td>Abréviations ..</td>
</tr>
<tr>
<td>9.3</td>
<td>Bibliographie ..</td>
</tr>
</tbody>
</table>

A Annexe

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Icônes ...</td>
</tr>
<tr>
<td>A.2</td>
<td>Références et sites Internet ..</td>
</tr>
<tr>
<td>A.3</td>
<td>Adresses ..</td>
</tr>
</tbody>
</table>
0.1 Historique du document

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changements</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-01-01</td>
<td>FR01</td>
<td>-</td>
<td>Édition originale</td>
</tr>
<tr>
<td>2000-06-01</td>
<td>FR02</td>
<td>2012-05-31</td>
<td>Mise à jour</td>
</tr>
<tr>
<td>2011-04-27</td>
<td>FR03</td>
<td>2013-02-28</td>
<td>Nouvelle version, xx7 sep. doc. sur FAQ</td>
</tr>
<tr>
<td>2013-10-30</td>
<td>FR04</td>
<td>-</td>
<td>Changement de logo</td>
</tr>
<tr>
<td>2018-10-08</td>
<td>FRA05</td>
<td>ChA</td>
<td>Nouveau numéro de téléphone (2015)</td>
</tr>
</tbody>
</table>

0.2 Marques déposées

Saia PCD® et Saia PG5® sont des marques déposées de Saia-Burgess Controls AG.

Les modifications techniques dépendent de l'état de la technologie.

Publié en Suisse.
1 Philosophie et éléments de LON

1.1 La philosophie du LON

Le fondateur d’ECHELON voit le LON, Local operating network, comme le moyen d’amener le réseau de l’ordinateur sur la puce. La technologie a pour objectif d’établir des réseaux constitués d’un grand nombre de ce qu’on appelle des « nœuds », qui se caractérisent par leur coût avantageux. Ces nœuds peuvent être produits par différents fabricants et communiquent entre eux grâce au protocole LonTalk®.

Ils disposent tous de leur intelligence propre et grâce à leur fonctionnement déclenché par des événements, peuvent échanger des données entre eux. Les nœuds mesurent, contrôlent, régulent et communiquent. Le réseau de fonctions qui en découle est d’une flexibilité hors du commun avec un niveau d’interconnexion et de complexité modulables à souhait.

La réalisation et non la standardisation a dès le début été la devise des créateurs de la technologie, autour d’Armas Clifford Markkula. Ce dernier s’était déjà fait connaître auparavant avec Intel et Apple en qualité de dirigeant d’entreprises high-tech innovantes.

La mise à disposition sur le marché d’une puce électronique avec un système de communication intégré a permis à ECHELON, grâce à une rapide expansion, de créer une quasi-norme. Sa pièce maîtresse, le protocole LonTalk®, n’était alors accessible que par l’intermédiaire de ces puces électroniques spécifiques, jusqu’au développement du standard.

Aujourd’hui, le protocole est normalisé et ouvert pour l’implémentation sur d’autres puces électroniques. LonWorks® a su s’imposer dans de nombreuses normalisations telles que BACnet® (ASHRAE, Société américaine des ingénieurs du
chauffage, de la ventilation, de la climatisation et de la réfrigération), l'ISFS (Forum international sur la norme des stations-services, grandes entreprises pétrolières), la CEN TC-247, la SEMI (débitmètre de masse), CELECT (chauffage, Royaume-Uni) et l'IEC 708.1 à 708.3.

LonMark®, une organisation de fournisseurs de composants LON fondée par ECHELON, est à l'origine de la norme la plus importante. Ses membres se sont imposé son application.

La transmission de LonTalk® s'opère parfaitement via les lignes bifilaires, les réseaux 230 V, la fibre optique, les fréquences radio et les réseaux Ethernet.
1.2 Les quatre éléments du LON

La technologie LonWorks® se base principalement sur quatre éléments :

Le protocole LonTalk® définit le langage utilisé sur le média LON.

Les puces Neuron® sont en mesure d'interpréter ce langage et forment des nœuds à même d'exécuter des fonctions interconnectées au moyen du langage LonTalk®.

Les transmetteurs LonWorks® peuvent reproduire le LonTalk® sur différents médias physiques ; le langage est ainsi transmis via les canaux de communication les plus variés.

Ces outils forment donc l'épine dorsale du développement de produits, la planification et la réalisation d'installations. On distingue par conséquent les outils de développement (LonBuilder®, NodeBuilder®) et les outils d'installation (LonMaker®, ICELAN-G, Helios).
1.3 Le protocole LonTalk®

La puce Neuron® « parle » le langage LonTalk® : elle envoie et reçoit de courts té légrammes dans lesquels sont intégrées les données utiles essentielles (de 0 à 228 octets). Pour assurer l'efficacité et la fiabilité de son fonctionnement, et ce même lorsqu'un média de transmission tel qu'un réseau électrique de 230 V subit des interférences sévères, ECHELON s'est appuyée sur des processus éprouvés issus du monde de l'informatique et a assorti le protocole d'une gamme complète de services en conformité au modèle de référence OSI à 7 couches de l'ISO.

1.3.1 Structure fondamentale

1.3.1.1 Processus de transmission

La transmission s'effectue par paquets. La constitution et l'envoi de ces paquets sont pris en charge par le firmware ; l'utilisateur ne doit donc pas se soucier des fonctions de niveau moindre. Le protocole LON prévoit 4 processus de transmission différents :

- **Unacknowledged (sans accusé de réception)**
 Le paquet n'est envoyé qu'une fois. Aucune confirmation n'est attendue de la part du récepteur.

- **Acknowledged (accusé de réception)**
 Après l'envoi du paquet, une confirmation est attendue de la part du récepteur. Si celle-ci n'arrive pas où est négative, le paquet est alors envoyé une seconde fois. Le nombre d'envoi maximal possible est déterminé librement.

- **Unacknowledged/Repeated (sans accusé de réception, répétition)**
 Le paquet est envoyé plusieurs fois en enfilade, aucune confirmation n'est attendue de la part du récepteur. Le nombre de répétitions et le temps d'attente entre les envois est déterminé librement.

- **Request/Response (requête/réponse)**
 Procédé similaire à Acknowledged. La confirmation peut, outre la simple confirmation, contenir d'autres données.

L'utilisateur peut déterminer librement quel processus appliquer.

Pour une interface FTT-10, les paquets de données sont transmis au moyen du code Manchester différentiel. Les informations de données correspondent donc à une fréquence. Une période de fréquence élevée correspond à un 0 et une période basse à un 1. Chaque contenu de données donne lieu au minimum à un changement d'état du signal. Le décodage Manchester permet d'installer des lignes sans avoir à se soucier de la polarité. Le baud (nombre de bits transmis par seconde) correspond dans ce cas à la fréquence : une transmission de 78,1 kHz est en mesure de délivrer des informations à 78,1 kb/s.
Le bus LON n’atteint cependant pas ce taux de transfert car la longueur des télégrammes est limitée.

- **Code de Manchester différentiel, avec absence de composante courant continue pour le média choisi**
- **Synchronisation des bits adaptable au moyen de transmission**
- **Données de l'utilisateur variables de 1 à 228 octets**

La structure du télégramme est la suivante :

- **Bit-Synch.**
- Adresse de nœud
- Adresse de domaine
- Données de l'utilisateur
- CRC-16

Un télégramme se constitue toujours des bits de synchronisation (suite de « 1 ») qui s'ajustent en fonction du transmetteur concerné. Ces bits de synchronisation servent au circuit du transmetteur ; celui-ci peut ainsi se stabiliser sur la fréquence de réception. Le premier 0 indique le début des données d'adressage qui signalent au nœud de réception s'il doit prendre en compte ou non le télégramme entrant. Les données utiles ou les octets ACK/NACK viennent à la suite de l'adressage et indiquent si un message a bien été reçu.

1.3.1.2 Sécurité des données

Pour les systèmes de bus ouverts, il est éventuellement possible de garantir une sécurité supplémentaire des données. Le récepteur, grâce à un processus de transfert particulier, peut contrôler l'authenticité de l'émetteur. Pour cela, l'émetteur et le récepteur conviennent d'un numéro de code de 48 bits lors de l'installation du réseau. Ce code est indépendant du numéro d'identification spécifique de la puce. Il est transmis avec une procédure de cryptage différente à chaque envoi, ce qui garantit un niveau élevé de sécurité.

Si le nœud reçoit un message authentifié, il demande à l'émetteur de prouver son autorisation et lui envoie un nombre aléatoire à crypter (64 bits). L'émetteur encode ce nombre en utilisant son mot-clef et renvoie le résultat obtenu. Le récepteur compare ensuite la réponse avec le résultat de son propre encodage. Lorsque les données concordent, le processeur réseau du récepteur accepte le message d'origine et le transmet au programme applicatif. Dans les autres cas, le nœud récepteur ignore le télégramme d'origine et incrémente un compteur d'erreurs. L'authentification peut être définie pour chaque variable réseau et pour les commandes de gestion du réseau.
1.3.1.3 Priorités

Les différents nœuds peuvent être assortis de différents niveaux de priorité. Pour les messages hautement prioritaires, des créneaux de temps spécifiques (« time bins ») sont réservés à la fin de chaque paquet. C'est durant ces créneaux de temps que la transmission instantanée de l'un de ces paquets peut s'opérer. Les nœuds dont la priorité est la plus basse ne peuvent être transmis qu'à un moment ultérieur, pour autant que le canal de transmission ne soit pas déjà occupé par un nœud dont le niveau de priorité est plus élevé. Ainsi, pour les applications urgentes, un temps d'accès plus court peut être garanti pour certains nœuds.

![Diagramme de priorités](Image)

Illustration 1-4 : créneau temporel prioritaire

L'illustration 4 montre la succession de télégrammes et les créneaux temporels réservés aux messages prioritaires. Grâce à cela, le protocole donne la priorité à un nombre limité de messages à transmettre très rapidement. La temporisation au sein des créneaux de priorité et des créneaux temporels normaux intervient de façon aléatoire au moyen du processus CSMA.
1.3.2 Qu'est-ce que le CSMA?

Le CSMA signifie « Carrier Sense Multiple Access ». Les différents participants à un système peuvent accéder au média de communication pour lequel les algorithmes aussi intelligents que possible, destinés à reconnaître et à éviter les collisions, sont mis en application.

Le développement d'un mécanisme ingénieux a permis de minimiser au mieux la probabilité de collisions. Un nœud qui souhaite transmettre un paquet « écoute » en premier lieu le bus pour déterminer s'il est occupé. S'il détecte finalement la fin d'un paquet étranger, la transmission ne débute pas immédiatement. Le nœud attend un certain nombre d'unités de temps, que l'on nomme « time-bins » (créneaux temporels qui ne représentent que quelques bits). Le nœud commencera finalement la transmission de son paquet pendant l'un de ces « time-bins ».

Les premiers créneaux sont attribués aux nœuds dont le niveau de priorité est le plus élevé (voir ci-dessus). Si le nœud est moins prioritaire, il attend encore un certain nombre de « time-bins » et commence sa transmission. Le nombre de créneaux est déterminé par un générateur aléatoire. Pendant ce temps d'attente, le nœud continue à suivre l'activité sur le bus. Si un autre nœud le devance pour procéder à un envoi, la procédure recommence du début.

La probabilité que deux nœuds commencent leur envoi pendant le même créneau temporel est relativement faible grâce au contrôle du générateur aléatoire. Ainsi, lorsque la charge du bus est élevée, le nombre de collisions est maintenu à un niveau relativement faible.

Le protocole LonTalk® se caractérise par l'algorithme « CSMA predictive p-persistent » développé à l'université de Stanford. Cet algorithme garantit la transmission d'un certain taux de transfert en cas de surcharge réseau. LonTalk® sur-passe en cela les autres système de bus de terrain et leur comportement en cas de surcharge. Internet n'est en aucun cas en mesure d'en faire autant.

Illustration 1-5 : predictive p-persistent CSMA
1.3.3 Les couches de l' OSI

L'OSI (Open system interconnection) se définit comme étant la base sur laquelle la technologie Internet/intranet est édifiée. LonWorks® n'a pas réinventé la roue quant à son organisation et a aussi appliqué le modèle OSI. Le « temps système » plus long qui l'accompagne entraîne dans la pratique à une diminution à peine décelable des comportements de transaction ou de temps de réponse mais allège grandement la réalisation, la mise en service et la maintenance des réseaux. Parmi les services nommés, on peut mettre l'accent sur ceux qui suivent :

Accès efficace au média de transmission avec contrôle des priorités (comportement quasi-déterministe).
Débit ou filtrage transparent et bidirectionnel des télégrammes via des séparateurs physiques et logiques intégrés (routeurs).
Plusieurs modes d'adressage : Nœud unique, groupe, à tous (broadcast).
Envoi et réception de télégrammes avec ou sans accusé de réception, répétition et vérification d'autorisation.
Demande ciblée de données d'un ou plusieurs nœuds (requête-réponse, polling).
Envoi et réception de données priorisées, automatiques et en fonction de l'événement via les variables réseau.
Utilisation de références standardisées internationales.

<table>
<thead>
<tr>
<th>Couches OSI</th>
<th>Signification</th>
<th>Service LonTalk®</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 – Applicatiion</td>
<td>Compatibilité au niveau de l'application</td>
<td>Définition de l'objet : actionneur, capteur, contrôleur, variables réseau standard, gestion de réseau, installation, noyau temps réel</td>
</tr>
<tr>
<td>6 – Présentation</td>
<td>Interprétation</td>
<td>Transport de toutes les trames de télégrammes possibles</td>
</tr>
<tr>
<td>5 – Session</td>
<td>Action</td>
<td>Mécanisme requête-réponse (polling)</td>
</tr>
<tr>
<td>4 – Transport</td>
<td>Fiabilité</td>
<td>Transmission avec/sans accusé de réception. Adressage unique ou par groupe, messages authentifiés (mot-clef, code PIN), double identification, surveillance de séquence</td>
</tr>
<tr>
<td>3 – Réseau</td>
<td>Adressage destination</td>
<td>Messages broadcast, routeurs transparents, configurés et d'apprentissage, 32 385 nœuds par domaine, 248 domaines, code à 48 bits dans chaque puce.</td>
</tr>
<tr>
<td>2 – Liaison</td>
<td>Accès au média et vérification de trame</td>
<td>Vérification de trame, décodage de données, sécurité de données CRC 16. CSMA prédicif, anti-collision avec attribution adaptative de créneaux temporels d'accès, éventuellement avec des créneaux temporels prioritaires et matériel. Détection de collision.</td>
</tr>
</tbody>
</table>
1.3.4 L'assignation d'adresse

Le protocole LonTalk® prend en charge la segmentation d'un système LON et l'utilisation de différents médias de transmission. La topologie du réseau s'appuie sur les concepts suivants :

<table>
<thead>
<tr>
<th>Couches OSI</th>
<th>Signification</th>
<th>Service LonTalk®</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Physique</td>
<td>Alimentation électrique</td>
<td>Prise en charge de divers médias : RS-485, ligne bifilaire couplée à un transformateur, fréquence radio, infrarouge, LWL, câble coaxial, ligne téléphonique, réseau 230 V, etc. 610 bit/s à 1,25 Mbit/s</td>
</tr>
</tbody>
</table>

Tableau 1-1 : le modèle OSI

1.3.4.1 Domaine

Le domaine représente une quantité logique de nœuds sur un ou plusieurs canaux. L'échange de données ne peut ici s'opérer qu'entre les nœuds d'un même domaine. Celui-ci constitue donc la délimitation virtuelle d'un système LON. Plusieurs domaines peuvent coexister sur un canal. Il sont ensuite utilisés pour empêcher toute influence mutuelle des nœuds de différents systèmes LON sur le même canal. Par exemple, si les nœuds d'un même immeuble collectif communiquent par courant porteur, les systèmes LON de deux habitations devraient utiliser des adresses de domaines différents pour éviter que le matin, le radio-réveil et la cafetière s'enclenchent en même temps que les appareils du voisin. En outre, l'adresse du domaine peut également servir de numéro de série système pour le personnel de service. Un domaine peut contenir 32 512 nœuds, et un nœud peut faire partie au maximum de deux domaines.

Un domaine peut être défini par 0, 1, 3 ou 6 octets. Le domaine de longueur 0 sert à la transmission du message de service. Quant à la longueur 1 et à l'ID 0, ils sont utilisés pour les outils de développement et les messages LNS®. Le domaine est une partie de l'adresse dans le télégramme, c'est-à-dire qu'une longue identification de domaine génère plus de temps système sur le réseau.
1.3.4.2 Canal

Un canal est le média de transmission physique sur lequel des données sérielles sont transmises. Ce peut être par exemple un câble, une fréquence radio ou, pour une communication par courant porteur, une partie de l'alimentation en courant alternatif à 230 V. Un canal est toujours séparé d’un second canal par un routeur ou une passerelle. Les canaux peuvent être définis librement ; les sociétés ont ainsi la possibilité de mettre en œuvre des canaux spécifiques.

1.3.4.3 Sous-réseau

Un sous-réseau est un regroupement logique d’un maximum de 127 nœuds à l’intérieur d’un domaine. 255 sous-domaines peuvent à leur tour se trouver à l’intérieur d’un domaine. Tous les nœuds d’un sous-réseau doivent se trouver dans le même domaine. Un canal peut gérer à son tour plusieurs sous-réseaux. Les sous-réseaux sont donc des groupes d’adressage logiques utilisables via différents médias physiques. Un sous-réseau ne peut cependant franchir aucun routeur intelligent, ceux d’entre eux qui traversent les canaux doivent être reliés au moyen de ponts ou de répéteurs. Ainsi, un sous-réseau peut par exemple contenir tous les nœuds d’éclairage d’une usine, bien que ceux-ci soient contrôlés par fréquence radio, via le réseau 230 V ou au moyen d’un bus bifilaire.

1.3.4.4 Nœud

Chacun des 127 nœuds d’un sous-réseau peut être adressé par l’intermédiaire d’un numéro de nœud d’une longueur de 7 bits. C’est ainsi que l’on obtient le nombre maximal de 32 385 nœuds LON adressables par domaine (127 nœuds x 255 sous-réseaux).

1.3.4.5 Groupe

Différents nœuds LON d’un domaine peuvent être rassemblés en groupes ; chaque nœud peut cependant se trouver dans différents sous-réseaux. Avec une adresse de groupe d’1 octet, jusqu’à 256 groupes peuvent être définis au sein d’un domaine. Une puce Neuron® peut faire partie de 15 groupes au maximum. Lors d’une transmission de données avec accusé de réception (« acknowledged »), un groupe peut contenir jusqu’à 64 nœuds. Pour un télégramme sans accusé de réception (« unacknowledged »), tous les nœuds d’un domaine peuvent être sollicités. L’adressage de groupes constitue un moyen éprouvé pour réduire le nombre de télégrammes nécessaires à une communication broadcast (« one-to-many », un vers multiples). Par exemple, dans un hall de congrès, plusieurs lampes d’une même zone peuvent être contrôlées avec un seul télégramme. Ainsi, il n’y a aucun effet de défilement lumineux et le bus n’est pas surchargé avec la circulation de données inutiles.

Un groupe peut être divisé en plusieurs sous-groupes avec des outils d’installation adaptés, au moyen de ce que l’on nomme « group overloading » (surcharge de groupe). Voir à ce sujet le chapitre 5.
1.3.5 Modes d’adressage

Il est possible d’utiliser plusieurs modes d’adressage en fonction des possibilités d’assignations d’adressage. Le champ d’adressage LonTalk® désigne chaque fois les adresses de l'émetteur et de la destination d'un télégramme LonTalk®. Le protocole LonTalk® définit une hiérarchie d'adressage avec des adresses de domaines, de sous-réseaux et de nœuds. Pour une sollicitation simultanée de plusieurs nœuds LON, il existe en outre un adressage de groupe et de domaine. Il est donc possible de s'adresser à un nœud LON à plusieurs adresses.

Il existe au total cinq modes d'adressage : Le champ d'adresse complet se compose de l'adresse du domaine (0, 1, 3 ou 6 octets), de l'adresse de destination et de l'adresse de l'émetteur. L'adresse de destination contient, pour chaque type d'adressage, l'ID Neuron® (6 octets), l'adresse de groupe (1 octet) ou l'adresse de sous-réseau et de nœud (2 octets au total). L'adresse de l'émetteur se constitue toujours de l'adresse de nœud et de sous-réseau du nœud.

Un nœud LON peut être chaque fois adressé de façon ciblée via son ID Neuron®. À l'opposé, l'adresse attribuée lors de la phase d'installation peut changer au cours de l'existence d'un nœud. En raison de la longueur de l'ID Neuron® (6 octets), celui-ci ne devrait être utilisé que pendant l'installation et la configuration d'un réseau LON. Si un nœud doit être permuté, le nouveau nœud mis en place conserve tout simplement les mêmes informations d'adressage que l'ancien. Ses partenaires de communication au sein du réseau, en revanche, ne changent pas.

Un domaine est identifié par son ID de domaine de 0, 1, 3 ou 6 octets. Si l'ID Neuron® d'un nœud LON faisant partie du domaine est utilisé pour un ID de domaine de 6 octets, le caractère unique de l'ID de domaine est alors garanti. Dans un système LON dans lequel il ne peut y avoir aucune possibilité d'intersection entre différentes zones, il faut renoncer à l'ID de domaine au profit d'un télégramme court.

La longueur d'une adresse LonTalk® varie de 3 à 9 octets en fonction du mode d’adressage. À cela s'ajoute la longueur de l'ID du domaine (0 à 6 octets). La longueur des informations d’adressage contenues dans un télégramme LonTalk® varient quant à elles de 3 octets, pour un adressage de groupe, à 15 octets pour un adressage via l'ID Neuron® avec une adresse de domaine de 6 octets.

1.3.6 Les messages explicites

Tous les télégrammes LON sont des messages explicites, un « train de données » qui trouve son chemin à travers le réseau vers le bon nœud de destination. L'adresse représente le conducteur de la locomotive et se charge automatiquement de l'aiguillage au sein du réseau. À l'instar d'Internet, peut ainsi s'opérer la transmission de données, quelle que soit leur forme (couche 6). Les messages explicites sont utilisés par de nombreux fabricants pour le contrôle de leurs systèmes propriétaires. L'adresse du récepteur peut être prédéfinie par le programmeur ou configurée dans l'EPROM.

Avantage :

Plus efficace que les variables réseau
Inconvénients :

Sans connaissances précises sur la structure du message, aucune liaison n'est possible (la connexion avec les nœuds de fabricants inconnus n'est que difficilement envisageable).

Ils requièrent des dépenses plus élevées en matière de programmation, et donc plus de code.

Le LON offre cependant un « message explicite » spécial sur la couche n° 7 qui permet de relier directement les variables de programmation et le réseau. Le prochain chapitre traite de cette forme de message.

1.3.7 Variables réseau

Les variables réseau constituent la base de la caractéristique essentielle et unique en son genre de LonWORKS® : l'interopérabilité. Ce terme sous-entend le fonctionnement en synergie de produits de différents fabricants basés sur la technologie LonWORKS® selon des « règles du jeux » simples, par exemple : un brûleur à gaz, une sonde de température dans une chaudière, une pompe de circulation, un système de contrôle de pièce unique avec plusieurs sondes de température et robinets thermostatiques. En raison des interdépendances multiples de production, d'installation et de technique des fabricants, des planificateurs de systèmes et entreprises d'installation, l'interopérabilité est une condition préalable essentielle à l'expansion de LonWorks® dans l'industrie et dans l'automatisation des bâtiments. Autrement dit, avec LonWORKS®, les systèmes complexes peuvent se structurer comme s'ils provenaient de la même source. C'est ainsi que LonWORKS® évolue de manière continue mais inexorable vers une norme de facto.

Principe de communication :

Variables réseau (VR) :

Variables qui établissent une liaison entre un ou plusieurs nœuds. Le lien des variables s'établit au choix lors de la programmation de l'application, lors du test final de l'appareil, lors de l'installation sur place ou pendant le fonctionnement du réseau.

Pour établir des liaisons entre des nœuds de différents fabricants, on utilise ce que l'on appelle des variables réseau standard (SNVT) et des données de configuration standard (SCPTS).

Il est possible de « lier » les SNVT : une entrée dans sa mémoire locale permet à une SNVT de connaître les nœuds qui attendent ses données. Ces dernières font toujours l'objet d'une autre transmission si leur valeur change.

1.3.8 La configuration et la gestion du réseau

Sur le plan logique, il est possible d'établir une multitude de liaisons de communication entre chaque nœud Neuron® à l'aide des variables réseau (nommées liaisons). En règle générale, ces liaisons sont réalisées dans le champ à l'aide d'un outil d'installation (appareil portable, PC équipé de Windows et logiciels tels que « NL220 » de la société Neuron Systems ou LonMAKER® d'Echelon – voir en an-
nexe), des entrées correspondantes étant intégrées dans l'EEPROM de chaque nœud. Il existe cependant d'autres cas, comme par exemple pour le contrôle d'une machine, dans lesquels tous les nœuds sont déjà définis avec la totalité des liens de communication.

Plusieurs scénarios se dessinent pour la mise en service d'un système LON. En fonction de l'état des nœuds LON à installer, il est nécessaire de transférer les liens de communication et le programme applicatif vers les nœuds.

Variante la plus simple

L'installation Plug and Play de nœuds préconfigurés par l'utilisateur est l'option la plus simple.

Appareils d'aide

Les plus gros systèmes sont mis en service à l'aide d'un nœud de gestion de réseau (en abrégé NGR, appareil portable ou PC). Un NGR peut balayer un système LON pour y trouver de nouveaux nœuds et les configurer, charger, démarrer, arrêter et réinitialiser (« reset ») un programme applicatif sur un nœud. Il peut en outre lire les statistiques de communication produites par les nœuds, configurer des routeurs et définir la structure d'un système LON en fonctionnement. Pendant l'installation, il est nécessaire de procéder au regroupement de tous les nœuds LON selon leur position physique. L'installateur peut demander à un nœud d'exécuter une fonction spéciale grâce à la commande ... (par exemple, la lampe 1 clignote une fois) dans le but de l'identifier ou de le trouver. Il crée ensuite les liaisons logiques avec d'autres nœuds avec le NGR.

Constitution d'une liste

Un autre scénario consiste à élaborer une liste des ID Neuron® et des positions physiques (ainsi que des fonctions) des nœuds LON. Le NGR attribue sur cette base les liens de communication souhaités aux nœuds et leur fournit éventuellement le programme applicatif manquant. Pour simplifier l'installation, les puces Neuron® proposent une chaîne d'identification de nœud d'une longueur de 8 octets chacune.
1.4 Les nœuds LonWorks®

1.4.1 Les nœuds basés sur NEURON®

La puce NEURON® est la pièce maîtresse de la technologie LonWorks®. Il en existe deux variantes : la puce unique (type 3120) pour les applications simples et la puce avec une mémoire externe allant jusqu’à 64 Ko (type 3150) pour les applications complexes.

Leur point commun est qu’elles possèdent toutes deux 3 processeurs. Deux d’entre eux sont chargés exclusivement du traitement des télegmèmes messages via le port de communication tandis que le troisième processeur traite le programme utilisateur. L’échange de données entre les processeurs se fait via un tampon de données RAM. Dans la mémoire ROM intégrée se trouvent le firmware pour le système d’exploitation commandé par les événements, le protocole LONTalk® ainsi qu’une bibliothèque, qui contient à l’heure actuelle 34 modèles d’E/S. Ces derniers permettent de traiter des entrées et sorties numériques complexes de toutes formes au niveau des broches du bloc d’E/S de l’application. La puce 3120 dispose en outre d’une EPROM en quantité suffisante pour stocker le programme applicatif ainsi que les paramètres de configuration du réseau. Il est ainsi possible d’intégrer à tout moment un nœud encore « vierge » dans un réseau et de charger (« download ») « son » programme applicatif spécifique via le réseau. Les deux circuits rapides « Clock & Timer » (horloge et minuterie) en tant que base pour la programmation des fonctions d’E/S, ainsi qu’un numéro de série international unique de 48 bits, constituent deux autres de ses caractéristiques importantes. Ce numéro n’est pas uniquement responsable de l’installation mais peut également être utile pour l’attribution de numéros d’identification dans la propre banque de données interne de produits.

Illustration 1-7 : la puce NEURON®
1.4.1.1 Connexions d'E/S de la puce

Pour l'interface d'application, la puce Neuron® propose une multitude de configurations possible de ses 11 broches d'E/S. Avec les blocs intégrés « Timer/Counter » (horloge/compteur) de 16 bits et les 29 routines de fonctionnement, elles révèlent au programmeur de l'application une palette riche et intéressante de fonctions visant à contrôler différents types de capteurs et d'actionneurs. Les routines d'E/S présentées dans le firmware, également appelées objets d'E/S, évitent au programmeur le pénible ajustement de la structure d'algorithmes par tranches de bits au niveau de l'assembleur. Par conséquent, il est possible d'adapter les fonctions de manière peu coûteuse sur les produits LonWorks®.

- Bit, nibble, octet d'entrée et de sortie
- Entrée et sortie en série par bit
- Conversion A/D avec contrôle de débit double pente
- Entrée Edge Log
- Sortie de fréquence
- Décodeur infrarouge
- Détection de niveau d'entrée
- Détection de niveau d'entrée
- Bus multiplexés de données et d'adresse
- Entrée et sortie Neuro-Wire (SPI)
- Interface i²C
- Sortie bascule monostable et MLI
- Entrée On-Time- ou période
- Couplage de bus (actif, pasif) en parallèle
- Entrée et sortie pour compteur d'impulsions
- Entrée de quadrature
- Entrée et sortie asynchrone, en série
- Compteur total
- Commande en angle de phase
- Sortie de compteur déclenchées

Tableau 1-2 : Possibilités d'E/S
1.4.1.2 **Firmware, EEPROM, PROM, Flash-PROM, RAM**

Les types de mémoires des microprocesseurs NEURON® sont des concepts importants pour la manipulation des nœuds :

Firmware
Par firmware s'entend le programme en cours sur la puce Neuron®.

EEPROM
La puce Neuron® contient des emplacements mémoire effaçables électroniquement qui peuvent également renfermer, de manière limitée, un firmware. En règle générale, l'EEPROM est utilisée pour la sauvegarde des données de configuration. Une mémoire EEPROM peut être chargée via le réseau.

PROM
Une PROM contient le firmware et ne peut plus être modifiée de l'extérieur après la programmation.

FLASH-EPROM
Une mémoire FLASH-EPROM peut être effacée au moyen d'un rayon UV intégré à la puce, puis reprogrammée plusieurs centaines de fois. Elle peut être chargée sur le réseau et permet d'adapter des fonctions dans les appareils déjà installés.

RAM
La RAM est une mémoire volatile. Elle peut être enregistrée à l'aide de piles sous peine de perdre son contenu après la mise hors service.

(Random Access Memory)
1.4.1.3 Broche de service

Ce que l'on nomme broche de service est une connexion spécifique de la puce Neuron®. Elle représente un moyen de support naturel lors de la configuration, de la mise en service et de la maintenance du nœud de réseau dont la puce Neuron® fait partie. Si un bouton est connecté et que la broche de service et reliée à la terre, celle-ci (ou mieux encore, le firmware) envoie un télégribre spéciale de gestion de réseau et communique à tous les nœuds du réseau son numéro de sé-rie unique de 48 bits (ID de puce Neuron®). Cette information peut être utilisée par un gestionnaire de réseau pour l'attribution de l'adresse réseau logique du nœud lors de l'installation et pour la prochaine configuration. Si la broche de service est connectée à une diode lumineuse (LED), cette dernière peut signaler l'état de fonctionnement du nœud de réseau via différentes modes de clignotement.

Diagramme 1-1 : modes de clignotement de la LED de service

<table>
<thead>
<tr>
<th>Signification de l'affichage LED</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) NORMAL OPERATION (fonctionnement normal)</td>
<td>Au démarrage, la diode s'allume brièvement (< 1 s) et s'éteint définitivement. La puce Neuron® est configurée et travaille correctement.</td>
</tr>
<tr>
<td>B) FATAL ERROR (erreur fatale)</td>
<td>La puce Neuron® n'a pas pu démarrer (horloge, bus du CPU, réinitialisation ou problème de firmware). En règle générale, la carte de circuits imprimés ou ses composants a été endommagée.</td>
</tr>
<tr>
<td>C) APPLICATIONLESS (application manquante)</td>
<td>Dans le cas d'un état « Applicationless », la puce Neuron® a pu démarrer mais n'a pas pu trouver l'application correspondant au matériel. Dans ce cas, il faut charger un nouveau firmware. La LED affiche dans un premier temps « Normal operation », puis s'allume en continu après 3 secondes.</td>
</tr>
<tr>
<td>D) UNCONFIGURED (non configuré)</td>
<td>Dans le cas d'un nœud non configuré, la LED clignote à une fréquence de 1 Hz. Le matériel fonctionne correctement mais n'a pas encore démarré le programme utilisateur. Le nœud doit alors être configuré (assignation d'une adresse logique), pour que son état passe au mode « Normal operation ».</td>
</tr>
<tr>
<td>E) WATCHDOGING (chien de garde)</td>
<td>La surveillance interne de la puce Neuron® redémarre la puce toutes les 750 ms, redémarrage signalé par un clignotement court de la LED. Le nœud tente en fait de démarrer normalement mais détecte une erreur de temps d'exécution. Le non fonctionnement de ports parallèles ou des interfaces bit-série non synchronisées peuvent être à l'origine de l'erreur.</td>
</tr>
</tbody>
</table>

Le firmware de la puce Neuron® démarre dans tous les cas lors de l'activation de la broche de service, indépendamment du fait que le nœud comporte déjà un programme utilisateur ou que la configuration du réseau ait déjà eu lieu.

La broche de service est soumise à un contrôle par le logiciel (firmware) si celui-ci est connecté à une broche d'E/S. Le programme principal du processeur réseau (second processeur sur la puce Neuron®) demande régulièrement à la broche de
service chaque télégramme envoyé/reçu. Il est également possible d'accéder à la broche de service à partir du programme utilisateur. Le programmateur doit cependant considérer certaines différences dans le classement logique de la broche de service lors de l'écriture du programme utilisateur. Ce classement dépend du type de processeur et de la version du firmware.

1.4.1.4 Programmation en Neuron C

Les puces Neuron® sont programmées en langage « Neuron C ». En règle générale, les nœuds peuvent être à nouveau chargés via le réseau : le réseau entier devient ainsi une application programmable librement.

La fonctionnalité d'un système LON entier peut être décrite sous la forme d'un programme C dont toutes les procédures communiquent ensemble via les variables réseau. Le fait que chaque sous-programme fonctionne sur différents micro-contrôleurs reliés physiquement entre eux par un seul bus passe au second plan pour le programmateur.

Parmi les prestataires de services LonTech, on peut trouver des sociétés pouvant mettre en œuvre efficacement des applications spéciales.

1.4.1.1 Possibilités de configuration

Les nœuds NEURON® disposent d'une structure de données qui leur permet de se connecter à ses partenaires réseau. Cette structure est en règle générale gérée par un outil d'installation qui prend en charge le contrôle via les fonctions du système. Deux tables de domaines servent à sauvegarder l'appartenance à un domaine. Il est en outre possible d'enregistrer 64 sélecteurs pour les variables réseau, ce qui permet d'entrer les liaisons. Pour que le nœud sache où envoyer les données sortantes, il dispose de 14 tables d'adressage.

Illustration 1-8 : les données de configuration d'un NEURON®

Lorsqu'une variable de sortie reçoit une nouvelle valeur, le programme consulte le « nv_tab » pour trouver quel sélecteur y est reporté et avec quelle table d'adressage il doit travailler. À son tour, la table d'adressage reçoit les informations quant au
domaine à utiliser. C'est de cette manière qu'est assemblée l'adressage du télégramme. Un NEURON® peut donc adresser directement un maximum de 14 autres nœuds. Lors de l'utilisation des adresses de groupes, un maximum de 14 groupes peut être servi mais des messages de groupes entrants doivent également être entrés dans la table d'adressage. Les tables de groupes peuvent cependant utiliser plusieurs sélecteurs afin qu'un nœud puisse être relié à plus de 14 récepteurs.

1.4.2 Processeur monopuce 3120

La 3120 monopuce est utilisée pour les modules LowCost avec des fonctions limitées, sa mémoire étant elle-même très limitée. Il est possible de charger les programmes dans l'EEPROM via le bus.

<table>
<thead>
<tr>
<th>Type de puce</th>
<th>3120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processeurs</td>
<td>3</td>
</tr>
<tr>
<td>Nombre d'octets de l'EEPROM</td>
<td>512</td>
</tr>
<tr>
<td>Nombre d'octets de la RAM</td>
<td>1 024</td>
</tr>
<tr>
<td>Nombre d'octets de la ROM (firmware)</td>
<td>10 240</td>
</tr>
<tr>
<td>Interface de mémoire externe</td>
<td>Non</td>
</tr>
<tr>
<td>Horloge/compteur 16 bits</td>
<td>2</td>
</tr>
<tr>
<td>Horloge surveillance</td>
<td>Oui</td>
</tr>
<tr>
<td>Boîtier</td>
<td>SOIC</td>
</tr>
<tr>
<td>Broches</td>
<td>32</td>
</tr>
</tbody>
</table>

Tableau 1-3 : données, puce NEURON® 3120

1.4.3 Processeur à puces multiples 3150

La puce 3150 permet de contrôler un bus externe de données et convient ainsi aux tâches plus complexes. La puce 3150 est comparable à la 68HC11 ou à la 80C535 en terme de puissance de processeur disponible pour l'application.

<table>
<thead>
<tr>
<th>Type de puce</th>
<th>3150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processeurs</td>
<td>3</td>
</tr>
<tr>
<td>Nombre d'octets de l'EEPROM</td>
<td>512</td>
</tr>
<tr>
<td>Nombre d'octets de la RAM</td>
<td>2 048</td>
</tr>
<tr>
<td>Nombre d'octets de la ROM (firmware)</td>
<td>-</td>
</tr>
<tr>
<td>Interface de mémoire externe</td>
<td>Oui</td>
</tr>
<tr>
<td>Horloge/compteur 16 bits</td>
<td>2</td>
</tr>
<tr>
<td>Horloge surveillance</td>
<td>Oui</td>
</tr>
<tr>
<td>Boîtier</td>
<td>PQFP</td>
</tr>
<tr>
<td>Broches</td>
<td>64</td>
</tr>
</tbody>
</table>

Tableau 1-4 : données, puce NEURON® 3150
1.4.4 MIP (Micro Processor Interface Program)

Pour que le LonTalk® puisse être reproduit sur des processeurs plus performants, un port parallèle vers d'autres systèmes de processeurs a été implémenté sur la puce Neuron®. Le contrôle du port s'opère à l'aide d'une couche de liaison et d'un message d'application du protocole de couches et donne l'accès intégral au protocole LonTalk® par l'intermédiaire du couplage au microprocesseur.

Les nœuds du MIP ne sont plus limités en terme de performance de processeur. Un MIP peut traiter 4 096 entrées de sélecteurs mais le nombre de tables d'adresses et de domaine est toujours limité, respectivement à 15 et à 2.

Pour l'essentiel, un nœud basé sur le MIP se comporte de la même façon pour l'intégrateur système. Il offre simplement plus de variables et est plus performant.

1.4.5 Nœud hôte (NGR, nœud de gestion réseau)

Les nœuds hôtes sont des nœuds capables de prendre en charge des fonctions de gestion de réseau. Ils gèrent et relient les autres nœuds.

Les nœuds hôtes disposent d'une mémoire non volatile (EEPROM, disque dur) et sont en mesure de gérer 4 096 sélecteurs et un nombre infini d'adresses, le nœud hôte attribuant lui-même les entrées aux nœuds. L'outil d'installation intégré au nœud hôte décide de l'attribution de groupes et d'adresses de sous-réseau/de nœud et peut ainsi adapter les entrées aux besoins.

L'outil d'installation doit cependant se contenter de 15 groupes pour les messages entrants. Il peut dans ce cas assigner plusieurs sélecteurs par table d'adressage dans le même groupe.

Dans l'architecture conventionnelle d'un système de bus LON, il n'est possible de travailler qu'avec un seul hôte par installation, ce qui complique la mise en œuvre d'installations importantes.

La LNS® (architecture Lon network service) accepte plusieurs nœuds hôtes qui font se concilier les entrées dans les données de configuration grâce au principe du serveur client.
1.5 Les transmetteurs LonWorks®

Les transmetteurs constituent le gros avantage de la technologie LonWorks®. Grâce à eux, les fabricants peuvent accéder efficacement aux médias les plus variés.

En raison des différentes technologies de transmetteurs, des topologies de bus correspondantes peuvent se former. Le schéma 1-9 illustre les topologies possibles :

- **Bus classique** : par exemple RS-485
- **Bus avec câbles de dérivation** : FTT-10, TP78 et TP1250 (transformateur)
- **Anneau** : LPT Power Link (avec alimentation) et Free Topology FTT (transformateur)
- **Étoile** : Link Power LPT (avec alimentation) et Free Topology FTT (transformateur)
- **Topologie libre** : Link Power LPT (avec alimentation) et Free Topology FTT (transformateur)

Schéma 1-9 : topologies de bus LonWorks®

1.5.1 Paire torsadée TP 78

Pour une topologie de bus conventionnelle, il est possible de travailler avec le transmetteur à paire torsadée 78, 1 kbps ou 1,25 Mbps.

Le bus isolé par le transformateur garantit une grande immunité aux perturbations.

<table>
<thead>
<tr>
<th>TP-78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance :</td>
</tr>
<tr>
<td>Nombre de nœuds par canal :</td>
</tr>
<tr>
<td>Ligne en dérivation :</td>
</tr>
<tr>
<td>Spécificité :</td>
</tr>
<tr>
<td>Plage de tension :</td>
</tr>
</tbody>
</table>

Tableau 1-5 : Données, paire torsadée TP 78
1.5.2 Topologie libre FTT-10

Le FTT-10 est sans aucun doute le transmetteur le plus apprécié et s'est imposé en tant que norme. La conduite d'un bus de terrain dans une topologie libre représente aujourd'hui encore une performance technologique majeure. L'intégration simple de ces composants dans les produits est particulièrement remarquable et ses directives de conception sont la garantie quasi-certaine d'une certification CE réussie.

Tableau 1-6 : topologie libre FTT-10

<table>
<thead>
<tr>
<th>Type</th>
<th>Média</th>
<th>kbps</th>
<th>Longueur/topologie/Rem.</th>
<th>Nombre de nœuds</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTT-10</td>
<td></td>
<td></td>
<td>2 700 m, double terminaison. En topologie de bus, 400 m en topologie libre et terminaison simple.</td>
<td></td>
</tr>
<tr>
<td>Nombre de nœuds par canal</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage de tension</td>
<td>+230 V à 230 V RMS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5.3 RS-485

Le RS-485 est à ce jour la solution la plus économique mais n'offre (en fonction du type de spécification) qu'une plage de tension de -7 à +12 V. Convient particulièrement aux installations de taille plus réduite.

Tableau 1-7 : vue d'ensemble des transmetteurs LonWorks®

<table>
<thead>
<tr>
<th>Type</th>
<th>Média</th>
<th>kbps</th>
<th>Longueur/topologie/Rem.</th>
<th>Nombre de nœuds</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP- RS-485</td>
<td>Torsadé bifilaire</td>
<td>De 39 à 625</td>
<td>1 200 m à 39 kbps; bus, avec ou sans isolation galvanique</td>
<td>32 par segment de bus</td>
</tr>
<tr>
<td>TPT/XF 78</td>
<td>Torsadé bifilaire</td>
<td>78</td>
<td>1 200 m à 39 kbps; bus, avec ou sans isolation galvanique</td>
<td>32 par segment de bus</td>
</tr>
<tr>
<td>TPT/ XF1250</td>
<td>Torsadé bifilaire</td>
<td>1 250</td>
<td>130 m, bus avec ligne en dérivation de 0,3 m, isolation 277 V RMS</td>
<td>32 par segment de bus</td>
</tr>
<tr>
<td>FTT10 Transfo</td>
<td>Torsadé bifilaire</td>
<td>78</td>
<td>2 700 m en tant que bus, 500 m avec topologie libre, isolation 277 V RMS</td>
<td>32 par segment de bus</td>
</tr>
<tr>
<td>LPT10 Link</td>
<td>Torsadé bifilaire</td>
<td>78</td>
<td>500 m, topologie libre, 42 V CC, 5 V/100 mA par nœud</td>
<td>32 à 128 par segment de bus</td>
</tr>
<tr>
<td>PLT20 Power</td>
<td>230 VCA ou CC</td>
<td>4,8</td>
<td>50 m – 5 km, modulation BPSK bande C CENELEC, 132,5 kHz</td>
<td>Selon le réseau</td>
</tr>
<tr>
<td>PLT30 Power</td>
<td>230 VCA ou CC</td>
<td>2</td>
<td>50 m – 5 km, modulation BPSK bande C CENELEC, 132,5 kHz</td>
<td>Selon le réseau</td>
</tr>
<tr>
<td>IP-852 Tunnelage via IP</td>
<td>Tous canaux IP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.5.4 Link Power

Lors de l'utilisation de transmetteurs Link Power, les données et l'énergie électrique (48 V) circulent conjointement et sont protégées des inversions de polarité via une ligne bifilaire torsadée. Un bloc à découpage intégré à un transmetteur peut alimenter le nœud LON, y compris le circuit d'application, jusqu'à 100 mA à +5 V. Dans ce cas, un bloc d'alimentation central alimente un segment de bus d'une longueur de 320 m maximum. L'extension du bus peut être plus importante encore en reliant plusieurs segments Link Power. Lors de la pose de la ligne de bus, l'installateur n'a pas à se soucier des longueurs maximales éventuelles de branchements de bus ou des autres limitations topologiques car le transmetteur LPT-10 permet de choisir librement la topologie (étoile, anneau, multipoints). À partir de la même idée a été développé le FTT-10, le transmetteur en typologie libre. Contrairement au LPT-10, chaque nœud LON dispose dans ce cas de sa propre alimentation électrique. Les deux variantes peuvent également être combinées.

1.5.5 Courant porteur

Des générations d'ingénieurs en développement se sont penchés sur la thématique de la « transmission de données via le courant porteur ». Ce média courant porteur présente un énorme avantage : Il existe déjà dans les habitations et dans les bâtiments fonctionnels ; l'ouverture des murs pour la pose de lignes de bus n'est donc plus nécessaire. À contrario, le courant porteur pensé pour l'alimentation énergétique en tant que média de transmission de données présente un inconvénient tout aussi fâcheux : La caractéristique de la ligne est différente selon l'endroit et peut en outre changer à tout moment en fonction du type et du nombre d'utilisateurs connectés. Les blocs à découpage, les moteurs électriques ou les variateurs sont dans ce cas des sources de perturbations largement répandues qui faussent en partie la modulation des signaux de données sur l'alimentation secteur, jusqu'à ne plus les reconnaître. Grâce à l'utilisation de la largeur de bande de transmission disponible, à la sélection de processus de modulation adaptés et avec un filtre de signal approprié, le courant porteur peut cependant s'avérer utile pour la transmission d'informations. LonWORKS® propose pour cela trois modules de transmetteurs pour courant porteur.

Les bandes de fréquences pour la transmission de données sur courant porteur approuvées par les autorités sont différentes en Amérique du nord, au Japon et en Europe. En Amérique et au Japon, la gamme de fréquences libres s'échelonne de 0 à 500 kHz. Cette largeur de bande étendue permet de mettre en œuvre une procédure de modulation à large spectre (« spread spectrum modulation »). Ici, les informations sont transmises sur large bande dans une gamme de fréquence étendue. Les interférences, dont beaucoup sont limitées à leur largeur de bande, ne peuvent gêner la transmission de données sur toute la bande de fréquences. Le seul transmetteur par courant porteur homologué aux États-Unis, le PLT-10, travaille selon ce processus sur une plage de 100 à 450 kHz et atteint un taux de transfert net de 10 kbps.

En Europe, le CENELEC (Comité européen de normalisation électrotechnique) n’a libéré que la gamme de fréquence jusqu’à 150 kHz (début des fréquences radio à ondes longues) pour la communication par courant porteur. De surcroît,
cette plage est sous-divisée en différentes bandes. La bande CENELEC A (de 9 à 95 kHz) est réservée à l'échange de données pour les exploitants du réseau (entreprises de production et de distribution d'énergie et distributeurs). La bande CENELEC B (de 95 à 125 kHz) sert à la communication sans protocole d'accès pour les applications des clients finaux. Quant à la bande CENELEC C (de 125 à 140 kHz), elle supporte la communication de données contrôlée par protocole pour les applications client. Le transmetteur de bande A PLT-30 utilise également le procédé à large spectre et atteint ainsi un taux de transfert de 2 kbps dans cette gamme de fréquences. L'étroite bande C nécessite un autre procédé de modulation. Pour le PLT-20, on utilise la BPSK (Binary phase shift keying, modulation par déplacement de phase). Elle permet au transmetteur d'atteindre un taux de transfert de 4 kbps.

Pour l'étude de la conformité des réseaux à basse tension existants (230 V) utilisés en tant que média de communication de données, Echelon propose le PLCA (« Power line communications analyzer », analyseur de communications par courant porteur). Cet appareil permet de réaliser une série de tests qui, outre le taux d'erreur des télégrammes, apporte des éclaircissements quant aux paramètres de transmission analogiques du courant porteur (affaiblissement, interférences et distorsions de signal). De plus, il existe un kit de tests sur PC (PLE-30) qui permet d'établir une liaison de communication entre deux PC ou plus et de tester l'envoi et la réception de télégrammes avec des paramètres de transmission modifiables.

1.5.6 Autres transmetteurs

D'autres transmetteurs sont disponibles sur le marché :

- Transmetteurs à sécurité intrinsèque 78 kbps
- Radio 432 MHz
- Fibre optique
- Infrarouge
- Câble coaxial
- Ligne téléphonique
- Micro-ondes
1.6 **Les outils LonWORKS®**

Le quatrième élément, les outils LonWORKS®, regroupe les outils de développement et d'installation. Ils servent au développement de nœuds ou à la planification et à la réalisation d'installations.

Dans le cadre de cette introduction, seule une liste des outils les plus courants est jointe car ces outils sont traités dans le cadre d'une formation pour développeurs ou d'intégration de système. Les outils de développement pour Neuron®-C et autres applications hôtes sont d'autres outils, importants avant tout pour les développeurs. Il est ainsi possible de mettre des installations en place qui permettront aux compilateurs de champ, avec le logiciel de code source correspondant, de prendre en charge chaque nœud et qui pourront être étendues avec de nouveaux programmes via le réseau. Cette capacité est caractéristique des systèmes de bus de terrain mais n'est rendue possible en règle générale que pour des besoins spécifiques (publication du code source du firmware). Lors de l'étape « Runtime-Library » (bibliothèque d'exécution), une maintenance transparente du logiciel sur tous les nœuds est cependant usuelle.
1.6.1 Outils d'installation

Voici, à titre d'exemple, deux outils de travail sous Windows pour l'installation d'un réseau LON :

- « LONMaker® » d'Echelon
- « NL220 » de Neuron Systems

Il existe deux générations d'outils d'installation : d'une part les outils mis en place sur la première interface d'application Windows (Helios, Icelan-G, Alto et Metra-vision) et d'autre part les outils LNS/LCA (Lon Network Server/Lon Component Architecture) LONMaker® pour Windows, Unilon, Response et Pathfinder.

Pour tous les outils d'installation courants à l'heure actuelle, on peut considérer que l'intégration de plans de bâtiments et la représentation graphique des points de montage des nœuds sont prises en charge.

Les outils LNS/LCA plus récents se basent sur les normes Windows modernes et permettent de gérer le logiciel de contrôle et ses fonctions orientées objet et spécifiques aux nœuds (composants OXC Active-X). Lors du choix de l'outil d'installation, il faut veiller à ce les « device plug-ins » (plug-ins de périphériques) soient bien disponibles pour le matériel choisi. Un tel plug-in met à la disposition de l'intégrateur système une surface graphique pour le paramétrage simple du nœud, laquelle est intégrée dans l'outil d'installation. Il suffit de double-cliquer sur la représentation du nœud pour ouvrir la fenêtre du plug-in correspondant.

En règle générale, la commercialisation s'organise de manière à facturer chaque installation de nœud. Ainsi, les outils destinés aux installations plus modestes sont disponibles dans une gamme de prix raisonnable. Les dépenses liées à la configuration d'un système sont souvent sous-estimées en ce qui concerne la planification et le temps. Alors que pour les installations conventionnelles, chaque point de données devait être connecté à un câble, la liaison LonWorks® s'établit grâce à l'outil. Les dépenses pour le traitement de l'information restent les mêmes. Il est cependant difficile de s'en rendre compte au premier abord au vu du nombre de classeurs remplis de schémas électriques.
2

La norme LonMark®

2.1

La couche physique (couche 1)

La couche physique de LonMark® prend en charge les spécifications du transmetteur et est définie pour les transmetteurs suivants :

- TP-RS 485-39
- TP/XF-78
- TP/XF-1250
- TP/FT-10
- PL-10 (L-E)
- PL-20 (L-N)
- PL-20 (L-E)
- PL-30 (L-N)
- RF100
- IP-852 (LON par IP)

2.2

Les couches 2 à 6

LonMark® ne définit de conditions minimales supplémentaires que pour les couches 2 et 4 :

- Couche 2 : fréquences quartz minimales relatives au transmetteur
- Couche 4 : définition de la taille minimale de la mémoire tampon de transaction à 66 octets

2.3

La couche application (couche 7)

Pour garantir l'interopérabilité, les variables réseau sont rassemblées en objets, qui représentent, d'un point de vue logique, des capteurs, des actionneurs et des fonctions de contrôleurs. LonMark® se distingue dans ce domaine et a déjà défini plus de cent SNVT (type de variable réseau standard) et de SCPT (type de paramètres de configuration standard) qui garantissent l'interopérabilité de variables en termes de signification, de valeur et de plage.
La couche physique | la couche application

Illustration 2-1 : Documentation d'un nœud avec des objets LonMark®

Un SNVT est assorti d'un numéro qui définit son type. De plus, des informations concernant le SNVT sont enregistrées sur le nœud et peuvent être lues à partir du nœud avec les outils d'installation. Ces informations de test comprennent en règle générale le nom de la variable pour permettre la compréhension de la fonction.

Le tableau qui suit montre un extrait de la définition d'un SNVT de LonMark® :

<table>
<thead>
<tr>
<th>Mesure</th>
<th>Nom</th>
<th>Plage</th>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse</td>
<td>SNVT_speed</td>
<td>0..6553.5 m/sec en 0,1 m/s</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>SNVT_speed_f</td>
<td>-1E38 à +1E38 m/s</td>
<td>39</td>
</tr>
<tr>
<td>Niveau sonore</td>
<td>SNVT_sound</td>
<td>-327,68 à 327,67 dB (0,01 dB)</td>
<td>33</td>
</tr>
</tbody>
</table>

Tableau 2-1 : extrait de la définition d'un SNVT LonMark®

Les SNVT peuvent contenir des structures entières. Ainsi par exemple, le SNVT « SNVT_time_stamp » contient des informations temporelles complètes en années, mois, jours, heures, minutes et secondes.

Une liste actuelle de SNVT figure sur la page d'accueil de LonMark® (voir annexe).
2.4 Les objets LonMARK®

2.4.1 La structure d'un objet LonMARK®

Pour l'utilisation sur un nœud de réseau interopérable, il existe le protocole LON-TALK® et avec lui l'accès au réseau, uniquement sous la forme d'objets LonMARK®. Ces derniers se caractérisent par leur type (via un numéro attribué par l'organisation LonMARK®), un ensemble de variables réseau d'entrée et de sortie et un ensemble de paramètres de configuration. L'interopérabilité que la norme réseau s'efforce d'atteindre est représentée par les objets LonMark® dans leur forme et leur signification. La représentation de la structure de l'image 4-5 est générique.

Le numéro de l'objet représente son type tandis que son nom a pour but la compréhension. L'objet possède toujours une ou plusieurs variables réseau obligatoires (« mandatory 0187 ») ; il peut, en option, renfermer des VR facultatives. Les variables d'entrée sont représentées à gauche et les variables de sortie droite. Ensemble, les deux types sont numérotés de 1 à n, aucune différenciation ne devant être faite entre les variables d'entrée et de sortie. Seuls les SNVT sont utilisés.

La configuration, qui peut être entrée via des VR, porte cependant le numéro du paramètre de configuration correspondant (SCPT) issu de la liste de SCPT [8]. Les noms des VR peuvent contenir 11 signes au maximum, sans tiret bas, et doivent être écrits en majuscule, y compris la première lettre d'un mot. Des exemples figurent dans les paragraphes qui suivent.

![Diagramme de structure d'un objet LonMark®](image-2-2.png)
Les noms contiennent un préfixe. Celui-ci décrit leur classe de mémoire et la direction de transmission :

<table>
<thead>
<tr>
<th>Variable</th>
<th>Emplacement de sauvegarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>nvi ~ variable d'entrée</td>
<td>RAM</td>
</tr>
<tr>
<td>nvo ~ variable de sortie</td>
<td>RAM</td>
</tr>
<tr>
<td>nci ~ variable de configuration</td>
<td>EEPROM</td>
</tr>
<tr>
<td>nro ~ variable de sortie (en lecture seule)</td>
<td>ROM</td>
</tr>
</tbody>
</table>

Tableau 2-2 : préfixe des variables

La relation au processus utilisateur est représentée par une flèche : au-dessus en tant que sortie du matériel ou au-dessous en tant qu'entrée du matériel. Les différents types d'objets sont déduits en fonction de la précision des indications générales apportées telles que l'objet nœud, l'objet capteur, l'objet HVAC, etc.

2.4.2 **L'objet nœud**

L'objet nœud, auquel a été attribué le numéro de type d'objet « 0 », a pour but de surveiller et d'influencer les fonctions de tous les objets du nœud du réseau. Cela est possible grâce aux deux VR obligatoires « nviRequest », de type « SNVT_obj_request », et « nvoStatus », de type « SNVT_obj_status ».

![Diagramme de l'objet nœud](image-url)

Illustration 2-3 : Structure de l'objet nœud (type d'objet n° 0)
La variable réseau « nvi_Request » contient un champ de 2 octets, correspondant au numéro de l'objet sur le nœud, et un champ d’1 octet pour la commande codée en tant que chiffre, par exemple :

0 ~ Rq_Normal
2 ~ RQ_Update_Status
3 ~ RQ_Self_Test

La commande « 0 » réinitialise l'adresse de la commande pour passer de l'état inactif à un fonctionnement normal, par exemple. Si la commande « 2 » est attribuée à un objet spécifique, ce dernier envoie son état actuel via la variable de sortie « SNVT_obj_status » de l'objet nœud. Avec la commande « 3 », un objet sur le nœud se voit contraint de procéder à un auto-test. Toutefois, si la commande « 0 » est dirigée sur l'objet du nœud lui-même, tous les objets du nœud du réseau reviennent à l'état normal.

Les « directives d'interopérabilité pour la couche application LonMark® » reprennent une description détaillée de ces interconnexions. Les mêmes conditions s'appliquent aux VR optionnelles et aux paramètres de configuration.

Le paramètre de configuration « Max Send Time » définit le temps d'attente maximal au bout duquel l'objet signale de lui-même son état via la variable réseau « NVT_obj_status », sans mise à jour de VR au préalable. Cette fonction est appelée « battement de cœur » qui indique que l'objet est « encore vivant ». Le paramètre de configuration « Max Send Time » porte le numéro 22 de la Master List des SCPT.

2.4.3 Les objets capteurs

Les objets capteurs sont des objets LonMark® à caractère général utilisés avec tous types de capteurs et pour toutes les valeurs physiques telles que la température, la pression, l'humidité ainsi que pour des données numériques de dispositifs de contrôle et de commutateurs.

Les données peuvent être transmises directement à un nœud d'actionneur ou de régulation, via la variable réseau de sortie « nvoValue » de type « SNVT_xxx ». Il existe 2 types d'objets capteurs : l’« Open Loop Sensor Object » (objet capteur en boucle ouverte) de type d'objet n° 1, et le « Closed Loop Sensor Object » (objet capteur en boucle fermée) de type d'objet n° 2. Ils se différencient par la présence ou non de VR de signaux de retour dans l'objet. L'illustration 2-4 montre la structure de l'objet capteur sans signaux de retour.

La valeur de mesure envoyée via la VR « nvoValue » est convertible dans la bonne dimension physique par la partie du programme utilisateur qui enregistre les valeurs de mesure. Si nécessaire, il est également possible d'y procéder à la
linéarisation nécessaire. La conversion et la linéarisation de la valeur de mesure brute peuvent tout aussi bien être mis en œuvre via les paramètres de configuration « Translation Table X » (table de traduction X) et « Translation Table Y » (table de traduction Y).

Certes, la plage de mesures des SNVT utilisés comporte des valeurs minimale et maximale mais elle peut être limitée au besoin via les paramètres de configuration « Min Range » et « Max Range ». Le choix du paramètre de configuration « Send on Delta » se doit d'être adapté. Il définit l'amplitude de la variation de la valeur du capteur et déclenche l'envoi d'une mise à jour de la VR uniquement lorsqu'elle est atteinte. La fonction « battement de cœur » est utilisée par les spécifications de paramètre de « Max Send Time ». Il est également préférable de limiter le taux de mise à jour en spécifiant une valeur pour « Min Send Time ». Les valeurs par défaut sont définies indépendamment du débit binaire du média de transmission : il affiche 1 s à 1,25 Mbps et 60 s pour un débit binaire de 2 kbps.

Illustration 2-4 : structure de l'objet capteur en boucle ouverte (objet de type n°1)

L'objet capteur avec signaux de retour de l'illustration 2-5 convient aux applications pour lesquelles toutes les combinaisons de capteurs doivent travailler avec plusieurs actionneurs, plusieurs capteurs doivent travailler avec un seul actionneur, ou encore pour lesquelles un seul capteur doit travailler avec plusieurs actionneurs. Les positions finales doivent toutes disposer des mêmes informations. C'est le cas, par exemple, si un système d'éclairage peut être allumé ou éteint à différents endroits sans aucun contact visuel. L'illustration 2-5 permet d'identifier la différence essentielle avec un objet capteur sans signaux de retour : la VR supplémentaire « nviValueFb » (dans laquelle Fb = « feedback », signaux de retour).

Illustration 2-5 : Structure de l'objet capteur en boucle fermée (objet de type n° 2)

Illustration 2-6 : variantes de couplage entre les objets capteurs et actionneurs avec signaux de retour [6]

2.4.4 Les objets actionneurs
Les objets actionneurs (« Open » et « Closed Loop Actuator Objects », objets actionneurs en boucle ouverte et fermée) portent les numéros de types d'objet 3 et 4. Il s'agit également d'objets à caractère général. Ils peuvent ainsi être utilisés aussi bien dans des unités de contrôle de moteur, pour le contrôle de valves ou encore dans tout autre élément de réglage. L'illustration 2-7 montre la structure de l'objet actionneur avec signaux de retour. Celle-ci se différencie de l'objet actionneur sans signaux de retour uniquement par l'utilisation de la VR supplémentaire « nvoValueFb » et du paramètre de configuration n° 15 – entrée « Value Feedback Delay ». Le signal de retour est utilisé pour la synchronisation de la valeur effective et de la valeur souhaitée.

Illustration 2-7 : structure de l'objet actionneur avec signaux de retour (type d'objet n° 4)

2.4.5 L'objet contrôleur

Ce n'est que dans de rares cas qu'une application se passe d'objets capteurs et actionneurs. En pratique, les algorithmes de traitement pour les données de capteur sont plus complexes que la conversion directe d'une nouvelle valeur de capteur lors de la réponse d'un actionneur. La simple comparaison d'une valeur température réelle et d'une valeur de température de consigne requiert un algorithme de traitement complexe. Si l'actionneur doit limiter l'écart en exerçant une influence sur un système de chauffage, il s'agit alors d'un cas classique de contrôle. L'objet contrôleur est défini pour ce type de cas et d'autres cas d'application (illustration 2-8).

En tant qu'objet générique, il dispose d'une infinité de variables réseau d'entrée et de sortie dont le regroupement devrait aider à la compréhension des variables...
Les objets LonMark®

d'émission et de réception. C'est ainsi que se constituent (conceptuellement) une partie émetteur et une partie récepteur sur l'objet contrôleur. Les VR de la partie émetteur sont connectées aux VR correspondantes d'un objet actionneur. Il en va de même pour les VR de la partie récepteur et des VR correspondants d'un objet capteur (cf. illustration 2-8). La variable « nviValueFb » est utilisée avec les objets actionneurs avec signaux de retour. La variable « nvoValueFb » est quant à elle utilisée uniquement avec les objets capteurs avec signaux de retour et est ainsi mise à jour immédiatement à la réception d'une nouvelle valeur via la VR « nviValue ».

![Diagramme de l'objet contrôleur #5](image)

Illustration 2-8 : structure de l'objet contrôleur (type d'objet n° 5)

L’attribution d’un profil de fonction permet d’obtenir un objet spécifique à l’application à partir d’un objet LonMark® générique. Si ce nouvel objet présente un intérêt pour de nombreuses applications, il peut bénéficier de la certification d’objet LonMark®. Les paramètres de configuration de l’illustration 2-8 ne sont pas encore spécifiés. D’une part, ils doivent être choisis en fonction des objets capteurs et actionneurs utilisés, d’autre part ils doivent être spécifiques au contrôleur. Ainsi, l’objet contrôleur a impérativement besoin des paramètres de contrôle bande proportionnelle, temps d’intégrale, temps de dérivée ainsi qu’une valeur pour la fréquence d’échantillonnage lorsqu’il est utilisé en tant que contrôleur PID.
2.4.6 Les profils de fonction

Les objets de base permettent de déduire des profils de fonction conçus pour des applications spécifiques. Les profils de fonctions sont des objets dérivés des classes de base, sachant que les objets LonMark® correspondent aux classes de base et que les profils de fonction forment leurs sous-classes. Cette architecture nous permet de construire des réseaux orientés objets et de représenter ces derniers sur un ordinateur central, formant ainsi un système de contrôle configurable.

Les profils de fonctions sont définis comme suit (version 06/06/1999) :

<table>
<thead>
<tr>
<th>Désignation LonMark®</th>
<th>Désignation française</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic</td>
<td>Générique</td>
</tr>
<tr>
<td>Analogue Input</td>
<td>Entrée analogique</td>
</tr>
<tr>
<td>Analogue Output</td>
<td>Sortie analogique</td>
</tr>
</tbody>
</table>

Sensors

<table>
<thead>
<tr>
<th></th>
<th>Capteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Sensor</td>
<td>Capteur de lumière</td>
</tr>
<tr>
<td>Pressure Sensor</td>
<td>Capteur de pression</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>Capteur de température</td>
</tr>
<tr>
<td>Relative Humidity Sensor</td>
<td>Capteur d'humidité relative</td>
</tr>
<tr>
<td>Occupancy Sensor</td>
<td>Capteur de présence</td>
</tr>
<tr>
<td>CO₂ Sensor</td>
<td>Capteur de CO₂</td>
</tr>
<tr>
<td>Air Velocity Sensor</td>
<td>Débitmètre</td>
</tr>
</tbody>
</table>

Light Control

<table>
<thead>
<tr>
<th></th>
<th>Contrôle de la lumière</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp Actuator</td>
<td>Éclairage</td>
</tr>
<tr>
<td>Constant Light</td>
<td>Contrôleur luminaire</td>
</tr>
<tr>
<td>Occupancy Controller</td>
<td>Contrôleur de présence</td>
</tr>
</tbody>
</table>

Room Control

<table>
<thead>
<tr>
<th></th>
<th>Contrôle de la pièce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Interrupteur</td>
</tr>
<tr>
<td>Scene Panel</td>
<td>Panneau pièce</td>
</tr>
<tr>
<td>Scene Controller</td>
<td>Contrôleur pièce</td>
</tr>
<tr>
<td>Partition Wall Controller</td>
<td>Contrôleur mur de séparation</td>
</tr>
</tbody>
</table>

Time control

<table>
<thead>
<tr>
<th></th>
<th>Contrôle des éléments temporels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Keeper</td>
<td>Horloge en temps réel</td>
</tr>
<tr>
<td>Real Time Based Scheduler</td>
<td>Minuterie en temps réel</td>
</tr>
</tbody>
</table>

Motor Control

<table>
<thead>
<tr>
<th></th>
<th>Contrôle moteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Speed Motor Drive</td>
<td>Mise en marche moteur</td>
</tr>
</tbody>
</table>

Suite du tableau ➔
<table>
<thead>
<tr>
<th>Objets LonMark®</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>CVC</td>
</tr>
<tr>
<td>VAV controller (VAV)</td>
<td>Contrôleur de ventilation</td>
</tr>
<tr>
<td>Fan Coil Unit (FCU)</td>
<td>Unité de contrôle ventilation</td>
</tr>
<tr>
<td>Roof Top Unit (RTU)</td>
<td>Unité de toiture</td>
</tr>
<tr>
<td>Chiller</td>
<td>Refroidissement</td>
</tr>
<tr>
<td>Heat Pump with Temperature Control</td>
<td>Pompe à chaleur avec contrôle de la température</td>
</tr>
<tr>
<td>Thermostat</td>
<td>Thermostat</td>
</tr>
<tr>
<td>Chilled Ceiling Controller</td>
<td>Contrôleur de plafond froid</td>
</tr>
<tr>
<td>Unit Ventilator Controller</td>
<td>Contrôle pour unité de ventilation</td>
</tr>
<tr>
<td>Space comfort Control</td>
<td></td>
</tr>
<tr>
<td>Command Module</td>
<td>Module d'entrée du contrôleur confort de la pièce</td>
</tr>
<tr>
<td>Space Comfort controller</td>
<td>Contrôleur confort de la pièce</td>
</tr>
<tr>
<td>Damper</td>
<td>Volets incendie</td>
</tr>
<tr>
<td>Damper Actuators (general purpose; fire and smoke airflow control)</td>
<td>Mise en marche des volets à incendie</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>Technique du froid</td>
</tr>
<tr>
<td>Refrigerated Display Case</td>
<td></td>
</tr>
<tr>
<td>Controller: Defrost Object</td>
<td>Dégivreur</td>
</tr>
<tr>
<td>Refrigerated Display Case Controller</td>
<td></td>
</tr>
<tr>
<td>Evaporator Control Object</td>
<td>Évaporateur</td>
</tr>
<tr>
<td>Refrigerated Display Case Controller</td>
<td></td>
</tr>
<tr>
<td>Thermostat Object</td>
<td>Thermostat</td>
</tr>
<tr>
<td>Fire Alarming</td>
<td>Technique de sécurité incendie</td>
</tr>
<tr>
<td>Universal Fire Initiator</td>
<td>Alarme incendie</td>
</tr>
<tr>
<td>Smoke (Intelligent) Fire Initiator</td>
<td>Détecteur de fumée</td>
</tr>
<tr>
<td>Thermal Fire Initiator</td>
<td>Détecteur de chaleur</td>
</tr>
<tr>
<td>Audible Fire Initiator</td>
<td>Sonnerie alarme</td>
</tr>
<tr>
<td>Visible Fire Indicator</td>
<td>Alarme détection d'incendie</td>
</tr>
<tr>
<td>Universal Fire Indicator</td>
<td>Alarme universelle détection d'incendie</td>
</tr>
<tr>
<td>Power</td>
<td>Production d'énergie</td>
</tr>
<tr>
<td>Generator Set</td>
<td>Générateur</td>
</tr>
<tr>
<td>Utility</td>
<td>Répartition de l'énergie</td>
</tr>
<tr>
<td>Utility Data Logger Register</td>
<td>Journal de données (mesure de la consommation)</td>
</tr>
</tbody>
</table>

Tableau 2-1 : liste de profils de fonctions
Les nœuds, éléments constitutifs de l'organisation du réseau

3

Les éléments constitutifs du réseau

3.1 Les nœuds (nodes)

Les nœuds ont déjà été traités au chapitre 2.4.2. Le présent chapitre renvoie aux informations nécessaires à l'intégrateur du système pour étayer son point de vue. Il a besoin au minimum des données suivantes concernant ses nœuds :

• une description des fonctions complète et de bonne qualité
• un fichier de description de l'interface réseau, nommé fichier XIF
• la description de l'interface électrique
• la description du maximum de configurations possibles
• le maximum d'adaptations de programme et de versions de firmware possibles

3.2 Les éléments constitutifs de l'organisation du réseau

Le routeur sert de liaison logique entre différents canaux. Ses deux interfaces de bus peuvent être de nature identique ou différente. Ainsi un canal radioélectrique peut-il être relié à une ligne bifilaire, par exemple.

Les routeurs se constituent de deux puces NEURON® couplées entre elles. Celles-ci échangent les télégrammes sur leur couche 6 et les reproduisent chacune de leur côté. Les algorithmes du routeur sont déterminés par ECHELON et sont équivalents sur tous les produits.

Sous le terme générique routeur se cachent des possibilités de couplage avec différentes méthodes de relais (algorithmes de routeurs) :

3.2.1 Le répéteur

Le répéteur est le routeur le plus simple. Il transmet tous les télégrammes d'un canal à un autre. Outre la conversion entre les différents médias de transmission, le répéteur peut également procéder à la régénération de signaux analogiques (renforcement) et donc à l'extension de la longueur du bus.

3.2.2 Le pont

Le pont se trouve au niveau hiérarchique suivant des routeurs. Il est doté d'une intelligence locale et relaie uniquement les télégrammes d'un même domaine. Deux domaines peuvent cependant être transférés.
3.2.3 **Le routeur d'apprentissage**

Les routeurs d'apprentissage étudient le trafic de données sur les deux zones de réseau connectées et en déduisent la structure du réseau au niveau du domaine et du sous-réseau. Le routeur exploite alors ces informations pour sélectionner les télégrammes et les faire suivre d'un canal à un autre. Un routeur d'apprentissage n'étant pas en mesure de détecter la topologie de groupe existante, les télégrammes sont toujours transmis avec les adresses de groupes.

3.2.4 **Le routeur configuré**

Les routeurs configurés, quant à eux, ne convertissent entre les canaux que les télégrammes sélectionnés et répertoriés dans une table de routage (« routing table »). Cette table est établie à l'aide d'un outil de gestion de réseau. Il est également possible de programmer un routeur configuré pour le routage sélectif de télégrammes de groupes car l'outil assigne également des groupes d'adressage.

3.2.5 **Pourquoi utiliser un routeur ?**

Les routeurs configurés et d'apprentissage font partie de la classe des routeurs intelligents. Ils ne sont pas uniquement destinés à connecter des médias de transmission physiquement différents. En les programmant, il est également possible de filtrer des télégrammes entre canaux physiques identiques. Ils limitent la réception de télégrammes sur le domaine local en ne routant que des télégrammes sélectionnés issus d'autres domaines. Le reste du système LON est donc préservé du trafic des données sans intérêt pour lui.
3.3 Limites du système et astuces de contournement

3.3.1 Les limites du domaine

L'espace d'adressage du bus LON est divisé en différents niveaux hiérarchiques.

<table>
<thead>
<tr>
<th>Niveaux hiérarchiques</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveau supérieur</td>
<td>C'est ici que se trouvent ce que l'on nomme les domaines. Ils se différencient, en fonction de leur nombre, par un identificateur de 0, 1, 3 ou 6 octets.</td>
</tr>
<tr>
<td>Niveau intermédiaire</td>
<td>Au second niveau se trouvent les sous-réseaux. Il est possible d'en définir au maximum 255 par domaine.</td>
</tr>
<tr>
<td>Niveau inférieur</td>
<td>Ce dernier niveau est formé de tous les nœuds. Il est possible de définir au maximum 127 nœuds par sous-réseau. Le nombre maximal de nœuds par domaine est donc de 32 385.</td>
</tr>
</tbody>
</table>

En cas de dépassement du nombre maximal de nœuds par domaine, il est possible de créer un second domaine que l'on intègre à l'aide d'une passerelle.

En règle générale, le nombre maximal de nœuds par domaine ne constitue pas de facteur limitatif pour le système.

3.3.2 Limitation du nombre de groupes

Ces paramètres de base permettent de déduire une multitude de regroupements possibles. Ainsi un nœud peut-il faire partie de deux domaines différents, par exemple. Des nœuds différents peuvent également être définis en tant que groupes. Les groupes ont pour avantage de réduire de manière significative les conditions de l'adressage lors de l'envoi de messages. Ils peuvent s'étendre sur différents sous-réseaux. Il est possible de définir au maximum 256 groupes par domaine. En fonctionnement « Acknowledged » (avec accusé de réception), chaque groupe ne peut former que 64 nœuds au maximum contre un nombre illimité de nœuds en fonctionnement « Unacknowledged » (sans accusé de réception). Chaque nœud peut faire partie de 15 groupes au maximum.

Le nombre de 256 groupes pour 32 385 nœuds possibles constitue cependant une limite déterminante qui est pratiquement toujours atteinte. En outre, certains outils d'installation sont assez généreux concernant l'attribution de groupes.

La constitution d'un domaine global contenant toutes les liaisons de l'ensemble du réseau évite de devoir limiter le nombre de groupes. Les liaisons locales sont implémentées dans leurs propres domaines afin que la plage de groupes ne puisse en aucun cas être dépassée.
3.3.3 Limitation du nombre de participants au canal

Le nombre de participants au canal dépend du transmetteur. Si le nombre autorisé de nœuds (64, dans la plupart des cas) est atteint, il est possible de séparer un canal supplémentaire à l'aide d'un routeur. L'intégration ultérieure de routeurs dans un réseau existant n'est pas prise en charge par tous les outils d'installation. C'est pourquoi il est conseillé de ne pas utiliser toute la capacité du canal pour que le système puisse être équipé au besoin.

3.3.4 Limitation du nombre de tables d'adressage

Pour les outils de première génération, le seuil de 15 tables d'adressage, qui ne peut être dépassé que pour les nœuds de gestion de réseau, peut s'avérer problématique. Le cas échéant, il convient de se demander, lors du choix de l'outil d'installation, si celui-ci prend en charge le « group overloading » (surcharge de groupe). L'ensemble des outils LNS® prend en charge cette surcharge automatiquement :

un groupe est alors divisé en plusieurs sous-groupes qui travaillent avec l'adresse du groupe, mais différents sélecteurs ont été entrés. L'inconvénient des tables d'adressage et de la limitation du nombre de groupes n'a ainsi plus lieu d'être et garantit la transparence totale du système.
4 Appareils Saia PCD® pour réseaux LON

4.1 LON Hostmodul PCD7.F80x

Illustration 4-1 : vue d'ensemble du PCD7.F804

Illustration 4-2 : Diagramme de bloc PCD7.F80x
4.1.1 Modules d'interface LON disponibles

<table>
<thead>
<tr>
<th>Module</th>
<th>Fonctionnalité</th>
<th>pour</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD7.F802</td>
<td>Module d'interface LON pour, avec interface 3, type RS-485</td>
<td>PCD2.M120</td>
</tr>
</tbody>
</table>

Tableau 4-1 : modules d'interface LON disponibles

*) Uniquement disponible en tant que terminal PCD7.D165.
Cet ensemble comprend un terminal à connecteur D160 avec interface de communication supplémentaire RS-485 sur le port 3 (pas d'isolation galvanique) et une interface LON FTT10a.
Le PCD1 ne prend pas en charge le port 3 et pour le terminal, il faut par ailleurs utiliser le couvercle de boîtier avec évidement, référence de commande 4 104 7338 0.

4.1.2 Versions du matériel et du firmware

Le module d'interface LON PCD7.F80x est pris en charge par :

<table>
<thead>
<tr>
<th>Système Saia PCD®</th>
<th>Matériau</th>
<th>Firmware PDC 1/2/6</th>
<th>Firmware PCD7. F80x</th>
<th>Saia PG5®</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS1.C88x</td>
<td>A</td>
<td>---</td>
<td>090</td>
<td>Interne</td>
</tr>
<tr>
<td>PCD1.M120/130</td>
<td>D</td>
<td>---</td>
<td>$63</td>
<td>LN0</td>
</tr>
<tr>
<td>PCD2.M120</td>
<td>J</td>
<td>---</td>
<td>$73</td>
<td>LN0</td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>A</td>
<td>---</td>
<td>0A0</td>
<td>LN0</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>B</td>
<td>---</td>
<td>010</td>
<td>LN0</td>
</tr>
<tr>
<td>PCD2.M250</td>
<td>J *)</td>
<td>---</td>
<td>$73</td>
<td>LN0</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Tableau 4-2 : Versions matériel et firmware

*) Version du boîtier PCD2.M15x

Variables prises en charge

<table>
<thead>
<tr>
<th>Variables</th>
<th>Nombre</th>
<th>Taille des données utiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT</td>
<td>max. 4 095 par PCD *)</td>
<td>Variable</td>
</tr>
<tr>
<td>Message explicite</td>
<td>max. 4 095 par PCD *)</td>
<td>Jusqu'à 50 octets (LonMark®)</td>
</tr>
</tbody>
</table>

*) indépendamment de la mémoire PCD

4.1.3 Contrôleur LON

Le contrôleur LON MC143150 d'ECHELON est utilisé sur la carte PCD7.F80x. Le firmware du Neuron® est enregistré dans une mémoire EPROM de 32 k avec prise. La mémoire vive se compose d'une mémoire SRAM de 256 kb.

4.1.4 Interface de bus LON

L'interface LON est équipée d'un transmetteur FTT_10A. Le transmetteur LON a besoin du code Manchester pour la transmission de données ; c'est pourquoi il est possible d'utiliser un couplage CA (variante d'équipement de la carte PCD7.F80x). En règle générale, la carte PCD7.F80x est fournie en tant que coupleur CA.

4.1.5 Mode CA/CC

Le module est dimensionné de manière à fonctionner avec un LPT (cf. également le paragraphe 1.5.4). Le couplage CA est la norme. Le module LON est directement mis sous tension via le PCD. En mode CA, les 48 VCC utilisés lors d'une application LPT sont découplés via deux condensateurs.

4.1.6 Spécification du transmetteur

Veiller à respecter les instructions d'installation du transmetteur FTT_10A. (Cf. Manuel du transmetteur FTT_10A, disponible sur le site Internet d'ECHELON à l'adresse www.echelon.com). Pour protéger le transmetteur, des éclateurs ont été utilisés sur la platine. (Spécification : VDE [EN132 400, IEC384-12] rel. 2 UL1414 et CSA C22.2 N° 0;1).
4.1.7 **Raccordement de l'interface LON au PCD1/2**

Le raccordement de l'interface LON aux PCD 1 et 2 intervient via le connecteur à 6 pôles sur le module PCD7.F80x.

Pour le PCD6.M3, le raccordement intervient via le connecteur sub-D à 9 pôles du port n° 3.

Connexion LON : PCD1 / PCD2 avec modules PCD7.F80x

Important :
Le blindage du câble et les bornes 0 ou 1 du module LON doivent être relié directement à la PGND du PCD à la terre.

Illustration 4-3 : Raccordement LON PCD1/PCD2 avec le module PCD7.F80x

Pour une bonne mise à la terre, le manuel du FTT_10A recommande d'utiliser une résistance de 470 kΩ à la terre ou des éléments de terminaison. (Consulter le site http://www.lontech.com).
4.1.8 Raccordement de l'interface RS-485 au PCD2

En supplément à l'interface LON se trouve sur un PCD2.M120 une interface RS-485. Celle-ci ne dispose pas d'isolation potentielle. Les résistances de terminaison peuvent être activées par l'intermédiaire du cavalier situé en bas à gauche de la carte LON.

Illustration 4-4 : interface de connexion sur le PCD2, port n° 3 type RS-485

4.1.9 Résistances de terminaison

Illustration 4-5 : résistances de terminaison

Voir manuel 26/740 « Composants d'installation pour réseaux RS-485 »
4.1.10 **Connecteurs pour LON**

<table>
<thead>
<tr>
<th>Signal</th>
<th>Terminal de connecteur PCD7. F80x</th>
<th>Terminal de connecteur CD2. M120</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON A</td>
<td>4 + 5</td>
<td>---</td>
</tr>
<tr>
<td>LON B</td>
<td>2 + 3</td>
<td>---</td>
</tr>
<tr>
<td>GND</td>
<td>0 + 1</td>
<td>--</td>
</tr>
<tr>
<td>RX / TX</td>
<td>--</td>
<td>32</td>
</tr>
<tr>
<td>RX / TX</td>
<td>--</td>
<td>31</td>
</tr>
<tr>
<td>GND</td>
<td>--</td>
<td>30</td>
</tr>
</tbody>
</table>

Tableau 4-3 : connecteurs pour LON

4.2 **Mode de fonctionnement**

Illustration 4-6 : disposition des LED sur le module

Le matériel de l'interface se compose d'un circuit imprimé unique enfiché sur la carte principale du PCD. Le module contient un transmetteur FTT-10, le connecteur du bus et la puce Neuron®.

4.2.1 **Signification des LED**

3 LED affichent l'état du système :

<table>
<thead>
<tr>
<th>LED de service</th>
<th>indique l'état de la puce Neuron®</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED d'état</td>
<td>donne des informations sur l'état du driver du PCD</td>
</tr>
<tr>
<td>LED de trafic</td>
<td>donne des informations sur le trafic de données</td>
</tr>
</tbody>
</table>
4.2.2 Comportement de la LED de service

Il s'agit de la LED de service de la puce Neuron®. Elle s'allume lorsque le module se trouve dans l'état réinitialisation. Le diagramme ci-dessous montre le comportement pour les différents états de la LED de service :

A) NORMAL OPERATION (fonctionnement normal)
Cet état indique que la puce Neuron® est configurée et travaille en mode synchrone avec le microprocesseur du PCD. La LED s'allume pendant quelques millisecondes lors de la mise sous tension. Elle peut brièvement clignoter une seconde fois lors de la mise sous tension, pendant la synchronisation du module avec le driver.

B) FATAL ERROR (erreur fatale)
Pour indiquer cet état, la LED s'allume en continu et en rouge dès la mise sous tension. Dans ce cas, le module doit vraisemblablement être.

C) APPLICATIONLESS (application manquante)
Cet état de l'application signale que le firmware de la puce Neuron® est défectueux. La LED s'allume pendant une seconde après la mise sous tension, s'éteint ensuite pendant 2 secondes, puis se rallume en continu.

D) UNCONFIGURED (non configuré)
Cet état indique que l'outil d'installation n'a pas encore configuré le nœud ou que la configuration a été modifiée. Dans ce cas, la LED clignote pendant un cycle de 2 secondes (une seconde allumée, une seconde éteinte).

E) WATCHDOGING (chien de garde)
En cas de défaut logiciel (erreur de synchronisation d'interface), la LED clignote brièvement toutes les 750 ms. Pour corriger cette erreur, il est nécessaire de démarrer le PCD à froid.

<table>
<thead>
<tr>
<th>Affichage de la LED de service</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) NORMAL OPERATION (fonctionnement normal)</td>
</tr>
<tr>
<td>B) FATAL ERROR (erreur fatale)</td>
</tr>
<tr>
<td>C) APPLICATIONLESS (application manquante)</td>
</tr>
<tr>
<td>D) UNCONFIGURED (non configuré)</td>
</tr>
<tr>
<td>E) WATCHDOGING (chien de garde)</td>
</tr>
</tbody>
</table>
4.2.3 **Comportement de la LED d'état**

La LED d'état affiche l'état du driver du PCD. Elle s'allume lorsque le module se trouve dans l'état réinitialisation. Le diagramme ci-dessous indique le comportement lors des différents états de la LED d'état :

![Diagramme 4-2 : comportement de la LED d'état](image)

<table>
<thead>
<tr>
<th></th>
<th>Affichage de la LED d'état</th>
</tr>
</thead>
</table>
| A | Normal operation (fonctionnement normal)
 Après réinitialisation, la LED clignote pendant environ 100 ms. Cet état indique que l'interface travaille normalement et que le programme utilisateur a traité correctement les données avec la configuration actuelle. |
| B | Hardware error (erreur matériel)
 La LED s'allume en continu et en rouge lorsque le microprocesseur du PCD est dans l'incapacité d'initialiser correctement le module LON. Il est possible qu'un problème de réinitialisation ou qu'une erreur d'adressage du module soit à l'origine de ce comportement. |
| C | Application
 Cet état se produit lorsqu'aucun programme utilisateur ne fonctionne dans le PCD. Après le chargement d'une application, la LED signale l'état A ou D. |
| D | Not actualised backup (backup non mis à jour)
 Après le téléchargement de toutes les informations de variables sur le PCD à partir du PG4, l'état normal de la LED est « A ». L'état « D » signale à l'utilisateur que des informations de liaison ont été écrites sur le nœud du PCD par l'outil d'installation. En d'autres termes, de nouvelles informations de liaison ont été écrites pour une ou plusieurs variables dans la table d'adressage du nœud hôte. |
La LED clignote au minimum pendant 100 ms pour chaque télégramme lors du transfert de données via l'interface de la puce Neuron®. Lorsque la LED s'allume en continu, cela signifie qu'au moins 10 messages sont transmis par seconde. L'interface peut transmettre jusqu'à 160 télégrammes par seconde.

Diagramme 4-3 : comportement de la LED de trafic
5 Planification et installation d'un réseau LON

Toutes les informations de ce chapitre devraient être prélevées sur les pages d'accueil ci-dessous:

http://www.lontech.com/
http://www.echelon.com/
https://www.lonmark.org/
6 Le configurateur LON

La définition et la configuration d'un nœud hôte LON (paramètres de bus, stations réseau et définition de variables) peut être assez vaste en fonction de la taille du projet. Cette tâche est grandement facilitée pour l'utilisateur grâce au Saia PG5® LON configurateur.

6.1 Généralités

Le Saia PG5® LON configurateur est un outil add-on et fait partie de la suite Saia PG5® Engineering, qui fonctionne sous MS-Windows. Le système d'exploitation peut accéder à une largeur de données de 32 ou 64 bits. Aucun matériel spécifique n'est requis.

6.2 Processus de configuration du LON

Le processus est composé de plusieurs étapes :

1. Démarrage de Saia PG5®
2. Définition d'un nouveau projet
3. Définition et appel d'un projet LON dans le Gestionnaire de projets
4. Sélection du nœud hôte LON dans le configurateur du réseau
5. Définition des variables
6. Définition des paramètres de station
7. Sauvegarde de la configuration
8. Génération de la documentation
Appel et description du configurateur LON

6.3.1 Ouverture d'un nouveau projet

Après le démarrage de Saia PG5®, un nouveau projet est défini dans la bibliothèque de projets ou un projet existant est ouvert, par exemple « LON_Demo ».

Un double-clic sur le projet fait apparaître le Gestionnaire de projets dans lequel vous pouvez ouvrir le fichier de configuration LON. Cliquer sur « File » (fichier), puis sur « New » (nouveau). La fenêtre de sélection du type de fichier apparaît :

Sélectionner « LON (Lon Network) ». Cliquer sur « OK » et remplir la fenêtre qui s'affiche.

La fenêtre du Gestionnaire de projets se présente maintenant comme suit :
6.3.2 Structure de l'écran principal

Un double-clic sur le fichier de configuration LON (lon_st_3.lon) fait apparaître les fenêtres suivantes :

Dans la fenêtre active plus petite, sélectionner en double-cliquant dans la « Device List » (liste de périphériques) les PCD à utiliser en tant que nœuds hôtes LON. Ceux-ci se reportent alors dans la fenêtre principale.

Double-cliquer sur le champ « Description: » et la fenêtre suivante s'affiche.
La remplir en conséquence. En cliquant sur OK, le texte contenu dans le champ « Description: » s’actualise.

L’écran principal se présente maintenant comme ci-dessous :

Commandes des boutons de la souris en fonction des fenêtres :

Fenêtre « Device List » :

- **Bouton gauche** : Un double-clic sur l’appareil l’insère dans le réseau.
- **Bouton droit** : Ouverture du menu « Insert Station » (insérer station)/« Add » (ajouter)/« Remove Device » (supprimer un périphérique).

Fenêtre « Description » :

- **Bouton gauche** : Un double-clic sur la description ouvre la fenêtre d’entrée de la description du réseau.

Fenêtre « Réseau » :

- **Bouton gauche** : Un double-clic sur un appareil ouvre l’entrée des paramètres du périphérique.
- **Bouton droit** : Ouverture du menu « Parameter » (paramètre)/« Edit Project » (éditer le projet)/« Cut » (couper)/« Copy » (copier)/« Duplicate » (dupliquer)/« Delete » (supprimer)/« Print » (imprimer).
Les fonctions listées ci-dessus ne peuvent être utilisées que sous certaines conditions pour une configuration de nœuds LON, car pour chaque projet une seule station LON peut être configurée.

Lorsque l'utilisateur tente de configurer plus d'une station, le message d'erreur suivant s'affiche :

![Message d'erreur](image)

« Station Parameters... » (Paramètres de station...)

- **« Name »** (nom) : entrée du nom de la station.
- **« Node: »** (nœud) : La valeur par défaut est fixée à « 0 », l'adresse du nœud étant attribuée par l'outil d'installation.
- **« Node ID: »** (ID nœud) : Attribution d'un nom de 8 caractères max. pour l'identification du nœud dans l'outil d'installation.
- **« Project File: »** (fichier de projet) : Assignation d'un chemin pour l'enregistrement du fichier de projet.

![Parameters de station](image)
« Variables: »

Définition des SNVT (variables réseau standard) devant être utilisées dans le nœud hôte LON. Cette fenêtre reprend toutes les variables déjà définies dans les variables hôtes LON.

Il est possible de sélectionner un type de variable dans une liste répertoriant toutes les SNVT certifiées LonMark® via la fonction « New » (nouveau).
Une fois le type de SNVT sélectionné, il est possible d'attribuer un nom symbolique de 10 caractères max. à la variable. Il faut ensuite définir s'il s'agit d'une variable d'entrée ou de sortie.

L'option « Count » (nombre) permet, en une opération, de configurer plusieurs SNVT du même type, en connexion avec les FBox extensibles.

« Options: »

Ce sous-menu permet à l'utilisateur d'augmenter le nombre de 15 tables d'adressage actuel. La limite dans LonTalk® étant actuellement fixée à 15, le paramètre reste inchangé, à zéro (extension demandée par ECHELON).
6.4 Les menus du configurateur LON

Les sous-menus suivants sont disponibles dans le menu Fenêtre :

6.4.1 Structure du sous-menu « Network » (réseau)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Ouvre un nouveau projet. Il est possible de choisir entre un réseau PROFIBUSDP, SRIO ou LON.</td>
</tr>
<tr>
<td>Open</td>
<td>Ouvre un projet existant.</td>
</tr>
<tr>
<td>Close</td>
<td>Ferme le projet actif.</td>
</tr>
<tr>
<td>Save</td>
<td>Enregistre le projet actif sous le nom actuel.</td>
</tr>
<tr>
<td>Save as...</td>
<td>Enregistre le projet actif sous un nouveau nom.</td>
</tr>
<tr>
<td>Description...</td>
<td>Décrit le projet. Cette description s'affiche dans une fenêtre située en haut à droite de l'écran principal.</td>
</tr>
<tr>
<td>Print...</td>
<td>Imprime les paramètres de configuration du projet. Ces paramètres peuvent également être imprimés dans un fichier ASCII.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>Affiche un aperçu avant impression à l'écran. Y figurent tous les appareils utilisés, leurs paramètres et les médias correspondants.</td>
</tr>
</tbody>
</table>

Merci de lire attentivement les instructions pour utiliser correctement le configurateur LON.
Les menus du configurateur LON

- « Print Setup... » (configuration de l'impression)
 - Paramètres d'impression et du format papier.

- « 1 à 4 »
 - Affichage des 4 projets traités les plus récents.

- « Exit » (quitter)
 - Quitte le SNET.

6.4.2 Structure du sous-menu « Edit » (édition)

<table>
<thead>
<tr>
<th>Commande</th>
<th>Équivalent clavier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut</td>
<td>Ctrl+X</td>
</tr>
<tr>
<td>Copy</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>Paste</td>
<td>Ctrl+V</td>
</tr>
<tr>
<td>Duplicate</td>
<td>Ctrl+D</td>
</tr>
<tr>
<td>Delete</td>
<td>Del</td>
</tr>
</tbody>
</table>

- « Cut » (couper)
 - Coupe un nœud LON sélectionné et l'insère dans le presse-papiers. L'ensemble de la configuration des appareils y est copié, y compris les variables installées.

- « Copy » (copier)
 - Copie un nœud LON sélectionné dans le presse-papiers. L'ensemble de la configuration des appareils y est copié, y compris les variables installées.

- « Paste » (coller)
 - Insère un nœud LON dans le projet actif à partir du presse-papiers. L'ensemble de la configuration des appareils y est repris, y compris les variables installées.

- « Duplicate » (dupliquer)
 - Création de la copie d'un nœud LON sélectionné. Correspond à la suite de commandes « Copy and Paste » (copier et coller). L'ensemble de la configuration des appareils y est repris, y compris les variables installées.

- « Delete » (supprimer)
 - Supprime un nœud LON sélectionné.
6.4.3 Structure du sous-menu « View » (affichage)

- **Toolbar** (barre d'outils)
 - Affiche/masque la barre d'outils dans la partie supérieure de l'écran.

- **Status Bar** (barre d'état)
 - Affiche/masque la barre d'états dans la partie inférieure de l'écran.

- **Zoom to Fit** (zoom d'ajustement)
 - Permet d'afficher en permanence à l'écran tous les appareils présents sur le réseau.

- **Zoom In** (zoom avant)
 - Agrandit le contenu de l'écran du réseau.

- **Zoom Out** (zoom arrière)
 - réduit le contenu de l'écran du réseau.
6.4.4 Structure du sous-menu « Library » (bibliothèque)

« Add Device » (ajout de périphérique)

Insère de nouveaux nœuds.
Le fichier de ces nœuds doit avoir une extension « .ldd ».
Une fois le fichier .ldd sélectionné, l'appareil peut être classé dans un groupe de périphériques et dans ce cas être enregistré dans un nouveau groupe ou dans un groupe existant.

« Remove Device » (suppression du périphérique)

Supprime un nœud périphérique LON de la liste des périphériques.

« Rename Group » (renommer le groupe)

Donne un nouveau nom à un groupe de périphériques (non activé ici).

6.4.5 Structure du sous-menu « Project » (projet)
6.4.6 Structure du sous-menu « Online »

- **Go Online** (se connecter)
 - Connecte la fenêtre en ligne.

- **UploadDBX...**
 - Fonction de sauvegarde des informations de liaison. Toutes les informations enregistrées dans le nœud hôte par l'outil de liaison peuvent y être sauvegardées et enregistrées sur le PC, spécifiquement pour le projet.
 - **Important** : Sauvegarder les informations de liaison via « UploadDBX... » avant de télécharger de nouvelles informations de programme sur le PCD, sinon toutes les liaisons du nœud hôte sont perdues !
 - **Important** : Après la connexion des variables (SNVT) d'un projet LON, il est important de procéder à un démarrage à froid pour assurer le transfert des informations de connexion depuis la mémoire du module LON vers la mémoire du PCD.

- **Run** (exécuter)
 - Le processeur s'exécute s'il est en ligne.

- **Stop**
 - Le processeur s'arrête s'il est en ligne.

- **PCD Status** (état du PCD)
 - Indique l'état du PCD.

6.4.7 Structure du sous-menu « Window » (Fenêtre)
Les menus du configurateur LON

6.4.8 Structure du sous-menu « Help » (Aide)

- **« Cascade »**
 Présente tous les projets ouverts sur l'écran. Se présente sous forme de cascade pour faire apparaître le titre de chaque projet.

- **« Tile » (mosaïque)**
 Présente tous les projets ouverts sur l'écran. Présente les fenêtres de manière à ce que les projets ne se surprensent pas.

- **« Arrange Icons » (ré-organiser les icônes)**
 Présentation ordonnée de tous les projets sous la forme de miniatures.

- **« 1 à 10 »**
 Liste de sélection de tous les projets ouverts.

- **« Go Online »**
 Aperçu de l'aide par thèmes.

- **« Tile Using Help »**
 Décrit l'utilisation de l'aide.

- **« About Snet32 »**
 Affiche la version et le nom du titulaire de la licence.
7 Programmatation dans le programme utilisateur

Utilisation des variables LON (SNVT) dans le programme utilisateur du PCD (bibliothèque FUPLA LON)

7.1 Aperçu de la bibliothèque LON

Avant d'utiliser pour la première fois cette bibliothèque FBox, il est recommandé de lire les rubriques importantes qui suivent :

Saia PG5® LON FBox et Saia PG5® LON configurateur – chapitre 7.2.1

Pour trouver une FBox prenant en charge une SNVT spécifique, se reporter à la liste des SNVT :

Liste des SNVT – chapitre 7.2.2

Liste Master de SNVT

Autres informations concernant les définitions de SNVT, les formats et les structures disponibles à l'adresse :

http://types.lonmark.org

ou dans le fichier Pdf « SNVT Master List V11Rev2.pdf », sur la page de support PCD, à l'adresse :

http://www.sbc-support.com

Le mécanisme Auto Send – chapitre 7.2.3

Utiliser le bouton « Fichier d'aide » pour trouver la description FBox de cette bibliothèque.

S'ils sont installés, il est également possible de consulter les fichiers d'aides anglais et français.
7.2 Rubriques

7.2.1 Saia PG5® LON FBox et Saia PG5® LON configurateur

Pour connecter les variables PCD au réseau LON, il faut :

1. Configurer la variable LON par l'intermédiaire du configurateur.
2. Utiliser la FBox adéquate dans le FUPLA et connecter la variable PCD.

Le configurateur peut être appelé à partir du Gestionnaire de projet. Les variables LON (SNVT) doivent être définies et les options ad hoc sélectionnées. Le nom de la SNVT est utilisé comme référence dans FUPLA.

Pour toute autre information, consulter le fichier d'aide du configurateur LON.

Dans FUPLA, il faut choisir pour chaque SNVT la FBox correspondante. Le format et la direction de transmission doivent être adaptés dans le configurateur en fonction de la déclaration.

Les SNVT binaires requièrent des FBox binaires.

Les SNVT numériques (de 1 à 4 octets) requièrent une FBox nombre entier.

Les SNVT à virgule flottante requièrent une FBox virgule flottante.

Les entrées PCD requièrent des FBox SND.

Les sorties PCD requièrent des FBox RCV.

Cliqueter sur la mention « ref: »de la FBox pour définir la référence. Dans le champ de référence, entrer le nom déclaré dans le configurateur LON. De cette manière, la FBox accède à la SNVT correspondante.

Pour pouvoir déclarer une table de SNVT (« array »), toutes les SNVT de la table se voient spécifier un nom unique. Un tableau de SNVT requiert l'utilisation d'une FBox extensible. Le nom de la SNVT est complété automatiquement par un index (Nom00, Nom01, Nom02…).

Si la FBox ne correspond pas à la SNVT référencée, des messages d'erreur d'assemblage apparaissent.
7.2.2 Liste de SNVT

La liste qui suit permet de trouver la FBox qui prend en charge une SNVT particulière. Cette version ne prend pas en charge toutes les SNVT. SBC peut développer de nouvelles SNVT sur demande. Il faut alors joindre une description relative à leur utilisation dans le PCD.

Les SNVT sont regroupées dans une FBox en fonction de leurs formats de valeurs.

Exemple : toutes les SNVT de format virgule flottante sont prises en charge par la FBox SEND-virgule flottante.

Une fois la FBox souhaitée sélectionnée, le fichier d'aide correspondant peut être utilisé.

<table>
<thead>
<tr>
<th>Groupe/nom de SNVT</th>
<th>FBox RCV</th>
<th>FBox SEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe Binaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_switch</td>
<td>RCV Binaire</td>
<td>SEND Binaire</td>
</tr>
<tr>
<td></td>
<td>RCV Binaire + Valeur Rcv</td>
<td>SEND Binaire Auto</td>
</tr>
<tr>
<td></td>
<td>RCV Binaire + Valeur Rcv</td>
<td>SEND Binaire Snd</td>
</tr>
<tr>
<td></td>
<td>RCV Binaire Code</td>
<td>SEND Binaire + Valeur Rcv</td>
</tr>
<tr>
<td></td>
<td>SEND Binaire Code Auto</td>
<td></td>
</tr>
<tr>
<td>Groupe Temps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_time_stamp</td>
<td>RCV Date et Temps</td>
<td>SEND Date et heure</td>
</tr>
<tr>
<td>Groupe Virgule flottante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_amp_f</td>
<td>RCV Virgule flottante</td>
<td>SEND Virgule flottante</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>RCV Virgule flottante</td>
<td>SEND Virgule flottante Snd</td>
</tr>
<tr>
<td>SNVT_count_inc_f</td>
<td>SEND Virgule flottante Auto</td>
<td></td>
</tr>
<tr>
<td>SNVT_volt_f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe Nombre entier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_char_ascii</td>
<td>RCV Entier</td>
<td>SEND Entier</td>
</tr>
<tr>
<td>SNVT_count</td>
<td>RCV Entier Rcv</td>
<td>SEND Entier Snd</td>
</tr>
<tr>
<td>SNVT_count_inc</td>
<td>SEND Entier Auto</td>
<td></td>
</tr>
<tr>
<td>SNVT_flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_flow_mil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_kilohz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_milHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_hvac_emerg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_hvac_mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_lev_count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVT_lev_disc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe Objet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SNVT_obj_status</td>
<td>RCV État objet</td>
<td>SEND Demande Objet</td>
</tr>
<tr>
<td>SNVT_obj_request</td>
<td></td>
<td>SEND État</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groupe État</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_state</td>
<td>RCV État</td>
<td>SEND État</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groupe Alarme</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_alarm</td>
<td>Alarme RCV</td>
<td>Alarme SEND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groupe Carte magnétique</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_magcard</td>
<td>RCV Carte magnétique</td>
<td>SEND Carte magnétique</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groupe Paramètres</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_Setting</td>
<td>RCV Paramètres</td>
<td>SEND Paramètres</td>
</tr>
</tbody>
</table>

Tableau 7-1 : Liste des SNVT
7.2.3 Le mécanisme Auto Send

Toutes les FBox avec des mécanismes automatiques de transmission proposent des options similaires d'initialisation. Ci-dessous se trouvent les descriptions des paramètres « Min » et « Max » ainsi que des entrées « Snd » et « En ».

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option d'initialisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialisation</td>
<td>Oui Transmission de toutes les données lors de l'initialisation du PCD. Non Aucune transmission lors de l'initialisation.</td>
</tr>
<tr>
<td>Variation minimale de la valeur</td>
<td>Transmission de la valeur uniquement si la variation est plus importante que la valeur de paramètre depuis la dernière transmission. Si le paramètre est à 0, la transmission de la valeur est toujours réalisée. Pour les FBox binaires simples, ce paramètre n'est pas implémenté.</td>
</tr>
<tr>
<td>Intervalle de temps minimum</td>
<td>Transmission d'une nouvelle valeur uniquement à l'expiration de l'intervalle de temps minimum. Si le paramètre est à 0, la variation ou l'intervalle de temps maximum est déterminant.</td>
</tr>
<tr>
<td>Intervalle de temps maximum</td>
<td>Transmission de la valeur au minimum une fois après l'écoulement de l'intervalle de temps, même si la variation minimum de la valeur n'est pas atteinte. Si le paramètre est à 0, la fonction est désactivée.</td>
</tr>
</tbody>
</table>

Initialisation

La transmission de données est bloquée pendant 2 secondes à l'initialisation du PCD. Ce blocage permet de stabiliser les valeurs analogiques avant la transmission. Après ces 2 secondes :

Les valeurs des entrées S0 à S9 et V0 à V9 sont acceptées en tant que premières valeurs de référence.

Les intervalles de temps min./max. s'enclenchent.

Si l'option d'initialisation est activée, toutes les valeurs sont transférées simultanément.
Rubriques

Programmation dans le programme utilisateur

Intervalles de temps minimum/maximum et variation minimale de la valeur

Ces 3 paramètres permettent d'automatiser et d'optimiser la transmission de la valeur.

Chaque fonction peut être désactivée séparément en mettant le paramètre à 0. Si les 3 paramètres sont à 0, la valeur n'est jamais transmise automatiquement. Le déclenchement de la transmission n'est possible que par l'activation de l'entrée « Snd ».

Intervalle de temps minimum
Il permet de limiter le nombre de télégrammes si la valeur varie trop rapidement. Ainsi, le réseau n'est pas trop surchargé.

Intervalle de temps maximum
L'intervalle de temps maximum permet de forcer une transmission régulière, que la valeur ait été modifiée ou non. Le récepteur peut ainsi recevoir une valeur après s'être déconnecté. Les télégrammes éventuellement perdus sont répétés.

Variation minimale
La variation minimale de la valeur empêche définitivement de transmettre des valeurs dont la modification est minime. Ce paramètre doit être supérieur à la résolution pour les valeurs calibrées sous peine de transférer inutillement des valeurs identiques, la variation étant contrôlée avant le calibrage.
Illustration 7-1 : Intervalle de temps minimum/maximum et variation minimale de la valeur

Chaque fonction peut être désactivée séparément en mettant le paramètre à 0. Si les 3 paramètres sont à 0, la valeur n'est jamais transmise automatiquement. Le déclenchement de la transmission n'est possible que par l'activation de l'entrée « Snd ».

Entrées « Snd » et « En »

L'entrée « Snd » permet de procéder à une transmission sans que l'intervalle de temps ou la variation minimale n'ait été atteint.

Si l'entrée « En » est à 0, le transfert peut s'opérer. Ce principe présente un intérêt pour éviter la transmission de valeurs erronées lors de la mise en service, en cas de panne ou de réparation.
7.3 Saia PG5® FBox SND et RCV

7.3.1 Binaire

7.3.1.1 RCV Binaire

<table>
<thead>
<tr>
<th>FBox SND et RCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON-Rcv</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT_switch</th>
</tr>
</thead>
</table>

7.3.1.2 RCV Binaire Rcv

<table>
<thead>
<tr>
<th>FBox SND et RCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON-Rcv</td>
</tr>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>V0</td>
</tr>
<tr>
<td>V1</td>
</tr>
</tbody>
</table>

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT_switch</th>
</tr>
</thead>
</table>

7.3.1.3 RCV Binaire + Valeur Rcv

<table>
<thead>
<tr>
<th>FBox SND et RCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON-Rcv</td>
</tr>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>S0</td>
</tr>
<tr>
<td>S1</td>
</tr>
<tr>
<td>V0</td>
</tr>
<tr>
<td>V1</td>
</tr>
</tbody>
</table>

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT_switch</th>
</tr>
</thead>
</table>

Sorties/LED

<table>
<thead>
<tr>
<th>Rcv</th>
<th>Réception</th>
<th>Commute sur 1 pour un cycle dès que de nouvelles données sont réceptionnées.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 à S9</td>
<td>État</td>
<td>État binaire.</td>
</tr>
<tr>
<td>V0 à V9</td>
<td>Valeur</td>
<td>Valeur numérique. La valeur de sortie est convertie selon la plage sélectionnée.</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
<td>La LED est rouge en cas d'erreur de réception.</td>
</tr>
</tbody>
</table>
Paramètres

| Plage des signaux de sortie | Plage des signaux de sortie correspondant à 100 %. La valeur LON réceptionnée a une résolution de 0,5 %. La plage 1 000 correspond à une résolution de 5 unités. La valeur LON se trouve dans une plage de 0 à 200 et correspond à 0 à 100 %. Une plage de 200 transmet la valeur sur le réseau LON sans la convertir. |

7.3.1.4 RCV Binaire Code

![Diagramme RCV Binaire Code]

SNVT prises en charge

| SNVT_temp_switch |

Sorties/LED

<table>
<thead>
<tr>
<th>Rcv</th>
<th>Réception</th>
<th>Commute sur 1 pour un cycle dès que de nouvelles données sont réceptionnées.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 à S9</td>
<td>État</td>
<td>État binaire.</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
<td>La LED est rouge en cas d'erreur de réception.</td>
</tr>
</tbody>
</table>

Paramètres

<table>
<thead>
<tr>
<th>Code pour l'état ARRÊT</th>
<th>Code à recevoir pour l'état ARRÊT, codage hexadécimal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code pour l'état MARCHE</td>
<td>Code à recevoir pour l'état MARCHE, codage hexadécimal.</td>
</tr>
</tbody>
</table>

Description

Cette FBox particulière permet de spécifier le code obtenu pour les états MARCHE et ARRÊT. Il est ainsi possible d'adapter une SNVT_switch à un appareil qui n'a aucune fonction standard. La SNVT_switch est pourvue d'un code de 2 octets. L'octet de poids fort est une valeur analysée en pour cent (plage 0 à 200). L'octet de poids faible représente quant à lui l'état binaire. Si seul un état binaire est nécessaire, le code standard pour l'état MARCHE est C801 Hex (qui signifie 100 % en marche). Le code pour l'état ARRÊT est 0000 Hex. Certains appareils utilisent néanmoins le code 0001 pour indiquer l'état MARCHE.
7.3.1.5 SEND Binaire

| LON-Send | V |

SNVT prises en charge
SNVT_switch

7.3.1.6 SEND Binaire Snd

| LON-Send | Snd | V0 | V1 |

SNVT prises en charge
SNVT_switch

7.3.1.7 SEND Binaire Auto

| LON-Send | Snd | En | V0 | V1 |

SNVT prises en charge
SNVT_switch

7.3.1.8 SEND Binaire + Valeur Auto

| LON-Send | Snd | S0 | S1 | V0 | V1 |

SNVT prises en charge
SNVT_switch

Entrées/LED

<table>
<thead>
<tr>
<th>Rcv</th>
<th>Transmission</th>
<th>Une impulsion sur « Snd » active le transfert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>En</td>
<td>Activation</td>
<td>Activation de la transmission.</td>
</tr>
</tbody>
</table>
Paramètres

| Plage des signaux d'entrée | Plage des signaux d'entrée correspondant à 100 %. La valeur LON réceptionnée a une résolution de 0,5 %. La plage 1 000 correspond à une résolution de 5 unités. La valeur LON se trouve dans une plage de 0 à 200 et correspond à 0 à 100 %. Une plage de 200 transmet la valeur sur le réseau LON sans la convertir. |

| Autres paramètres | Pour en savoir plus, consultez la rubrique Transmission automatique. |

7.3.1.9 SEND Code Binaire Auto

SNVT prises en charge

| SNVT_temp_switch |

Entrées/LED

Snd	Transmission	Une impulsion sur « Snd » active le transfert.
En	Activation	Activation de la transmission
S0 à S9	État	État binaire.
LED	LED	La LED est rouge en cas d'erreur de réception.
Paramètres

<table>
<thead>
<tr>
<th>Code pour l'état ARRÊT</th>
<th>Plage des signaux d'entrée correspondant à 100 %. La valeur LON réceptionnée a une résolution de 0,5 %. La plage 1 000 correspond à une résolution de 5 unités. La valeur LON se trouve dans une plage de 0 à 200 correspondant à 0 à 100 %. Une plage de 200 transmet la valeur sur le réseau LON sans la convertir.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code pour l'état MARCHE</td>
<td>Code à recevoir pour l'état MARCHE, codage hexadécimal.</td>
</tr>
</tbody>
</table>

Description

Cette FBox particulière permet de spécifier le code obtenu pour les états MARCHE et ARRÊT. Il est ainsi possible d'adapter une SNVT_switch à un appareil qui n'a aucune fonction standard. La SNVT_switch est pourvue d'un code de 2 octets. L'octet de poids fort est une valeur analysée en pour cent (plage 0 à 200). L'octet de poids faible représente l'état binaire. Si seul un état binaire est nécessaire, le code standard pour l'état MARCHE est C801 Hex (qui signifie 100 % en marche). Le code pour l'état ARRÊT est 0000 Hex. Certains appareils utilisent néanmoins le code 0001 pour indiquer l'état MARCHE.
7.3.2 Entier
7.3.2.1 RCV Entier

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT</th>
<th>Résolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
<td>SNVT_mass</td>
</tr>
<tr>
<td>SNVT_amp_mil</td>
<td>SNVT_mass_kilo</td>
</tr>
<tr>
<td>SNVT_angle</td>
<td>SNVT_mass_meg</td>
</tr>
<tr>
<td>SNVT_angle_vel</td>
<td>SNVT_mass_mil</td>
</tr>
<tr>
<td>SNVT_btu_kilo</td>
<td>SNVT_occupancy</td>
</tr>
<tr>
<td>SNVT_btu_mega</td>
<td>SNVT_override</td>
</tr>
<tr>
<td>SNVT_char_ascii</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_config_src</td>
<td>SNVT_power_kilo</td>
</tr>
<tr>
<td>SNVT_count</td>
<td>SNVT_ppm</td>
</tr>
<tr>
<td>SNVT_count_inc</td>
<td>SNVT_press</td>
</tr>
<tr>
<td>SNVT_data_day</td>
<td>SNVT_press_p</td>
</tr>
<tr>
<td>SNVT_elec_kwh</td>
<td>SNVT_res</td>
</tr>
<tr>
<td>SNVT_elec_whr</td>
<td>SNVT_res_kilo</td>
</tr>
<tr>
<td>SNVT_flow</td>
<td>SNVT_rpm</td>
</tr>
<tr>
<td>SNVT_flow_mil</td>
<td>SNVT_sound_db</td>
</tr>
<tr>
<td>SNVT_freq_h</td>
<td>SNVT_speed</td>
</tr>
<tr>
<td>SNVT_freq_kilohz</td>
<td>SNVT_speed_mil</td>
</tr>
<tr>
<td>SNVT_freq_milhz</td>
<td>SNVT_telcom</td>
</tr>
<tr>
<td>SNVT_grammage</td>
<td>SNVT_temp</td>
</tr>
<tr>
<td>SNVT_hvac_emerg</td>
<td>SNVT_temp_p</td>
</tr>
<tr>
<td>SNVT_hvac_mode</td>
<td>SNVT_time_sec</td>
</tr>
<tr>
<td>SNVT_length</td>
<td>SNVT_vol</td>
</tr>
<tr>
<td>SNVT_length_kilo</td>
<td>SNVT_vol_kilo</td>
</tr>
<tr>
<td>SNVT_length_mic</td>
<td>SNVT_vol_mil</td>
</tr>
<tr>
<td>SNVT_length_mil</td>
<td>SNVT_volt</td>
</tr>
<tr>
<td>SNVT_lev_count</td>
<td>SNVT_volt_dbmv</td>
</tr>
<tr>
<td>SNVT_lev_disc</td>
<td>SNVT_volt_kilo</td>
</tr>
<tr>
<td>SNVT_lev_percent</td>
<td>SNVT_volt_mil</td>
</tr>
<tr>
<td>SNVT_lux</td>
<td></td>
</tr>
</tbody>
</table>

Ces SNVT n’ont pas de résolution décimale telles que 1, 0,1, 0,01 ou 0,001. Une conversion des valeurs transmises en dehors de la FBox peut s’avérer nécessaire.
7.3.2.2 RCV Entier Rcv

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
</tr>
<tr>
<td>SNVT_amp_mil</td>
</tr>
<tr>
<td>SNVT_angle</td>
</tr>
<tr>
<td>SNVT_angle_vel</td>
</tr>
<tr>
<td>SNVT_btu_kilo</td>
</tr>
<tr>
<td>SNVT_btu_mega</td>
</tr>
<tr>
<td>SNVT_char_ascii</td>
</tr>
<tr>
<td>SNVT_config_src</td>
</tr>
<tr>
<td>SNVT_count</td>
</tr>
<tr>
<td>SNVT_count_inc</td>
</tr>
<tr>
<td>SNVT_data_day</td>
</tr>
<tr>
<td>SNVT_elec_kwh</td>
</tr>
<tr>
<td>SNVT_elec_whr</td>
</tr>
<tr>
<td>SNVT_flow</td>
</tr>
<tr>
<td>SNVT_flow_mil</td>
</tr>
<tr>
<td>SNVT_freq_h</td>
</tr>
<tr>
<td>SNVT_freq_kilohz</td>
</tr>
<tr>
<td>SNVT_freq_milhz</td>
</tr>
<tr>
<td>SNVT_grammage</td>
</tr>
<tr>
<td>SNVT_hvac_emerg</td>
</tr>
<tr>
<td>SNVT_hvac_mode</td>
</tr>
<tr>
<td>SNVT_length</td>
</tr>
<tr>
<td>SNVT_length_kilo</td>
</tr>
<tr>
<td>SNVT_length_mic</td>
</tr>
<tr>
<td>SNVT_length_mil</td>
</tr>
<tr>
<td>SNVT_lev_count</td>
</tr>
<tr>
<td>SNVT_lev_disc</td>
</tr>
<tr>
<td>SNVT_lev_percent</td>
</tr>
<tr>
<td>SNVT_lux</td>
</tr>
</tbody>
</table>

* Ces SNVT n’ont pas de résolution décimale telles que 1, 0,1, 0,01 ou 0,001. Une conversion des valeurs transmises en dehors de la FBox peut s’avérer nécessaire.

<table>
<thead>
<tr>
<th>SNVT</th>
<th>Résolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_lev_cont</td>
<td>0,5</td>
</tr>
<tr>
<td>SNVT_lev_percent</td>
<td>0,005</td>
</tr>
</tbody>
</table>
7.3.2.3 SEND Entier

(button Übersicht,JumpID(‘LON_Library_Overview’) (button Verwandte FBoxen,AL({Integer»,0,’›,›}))

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
<td>SNVT_amp</td>
<td>SNVT_mass</td>
<td></td>
</tr>
<tr>
<td>SNVT_amp_mil</td>
<td>SNVT_mass_kilo</td>
<td></td>
</tr>
<tr>
<td>SNVT_angle</td>
<td>SNVT_mass_meg</td>
<td></td>
</tr>
<tr>
<td>SNVT_angle_vel</td>
<td>SNVT_mass_mil</td>
<td></td>
</tr>
<tr>
<td>SNVT_btu_kilo</td>
<td>SNVT_occupancy</td>
<td></td>
</tr>
<tr>
<td>SNVT_btu_mega</td>
<td>SNVT_override</td>
<td></td>
</tr>
<tr>
<td>SNVT_char_ascii</td>
<td>SNVT_power</td>
<td></td>
</tr>
<tr>
<td>SNVT_config_src</td>
<td>SNVT_power_kilo</td>
<td></td>
</tr>
<tr>
<td>SNVT_count</td>
<td>SNVT_ppm</td>
<td></td>
</tr>
<tr>
<td>SNVT_count_inc</td>
<td>SNVT_press</td>
<td></td>
</tr>
<tr>
<td>SNVT_data_day</td>
<td>SNVT_press_p</td>
<td></td>
</tr>
<tr>
<td>SNVT_elec_kwh</td>
<td>SNVT_res</td>
<td></td>
</tr>
<tr>
<td>SNVT_elec_whr</td>
<td>SNVT_res_kilo</td>
<td></td>
</tr>
<tr>
<td>SNVT_flow</td>
<td>SNVT_rpm</td>
<td></td>
</tr>
<tr>
<td>SNVT_flow_mil</td>
<td>SNVT_sound_db</td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_h</td>
<td>SNVT_speed</td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_kilohz</td>
<td>SNVT_speed_mil</td>
<td></td>
</tr>
<tr>
<td>SNVT_freq_milhz</td>
<td>SNVT_telcom</td>
<td></td>
</tr>
<tr>
<td>SNVT_grammage</td>
<td>SNVT_temp</td>
<td></td>
</tr>
<tr>
<td>SNVT_hvac_emerg</td>
<td>SNVT_temp_p</td>
<td></td>
</tr>
<tr>
<td>SNVT_hvac_mode</td>
<td>SNVT_time_sec</td>
<td></td>
</tr>
<tr>
<td>SNVT_length</td>
<td>SNVT_vol</td>
<td></td>
</tr>
<tr>
<td>SNVT_length_kilo</td>
<td>SNVT_vol_kilo</td>
<td></td>
</tr>
<tr>
<td>SNVT_length_mic</td>
<td>SNVT_vol_mil</td>
<td></td>
</tr>
<tr>
<td>SNVT_length_mil</td>
<td>SNVT_vol</td>
<td></td>
</tr>
<tr>
<td>SNVT_leq_count</td>
<td>SNVT_volt</td>
<td></td>
</tr>
<tr>
<td>SNVT_leq_disc</td>
<td>SNVT_volt_kilo</td>
<td></td>
</tr>
<tr>
<td>SNVT_leq_percent</td>
<td>SNVT_volt</td>
<td></td>
</tr>
<tr>
<td>SNVT_lux</td>
<td></td>
</tr>
</tbody>
</table>

* Ces SNVT n’ont pas de résolution décimale telles que 1, 0,1, 0,01 ou 0,001. Une conversion des valeurs transmises en dehors de la FBox peut s’avérer nécessaire.

<table>
<thead>
<tr>
<th>SNVT</th>
<th>Résolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_leq_cont</td>
<td>0,5</td>
</tr>
<tr>
<td>SNVT_leq_percent</td>
<td>0,005</td>
</tr>
</tbody>
</table>

FBox SND et RCV
7.3.2.4 SEND Entier Snd

![Diagram of SEND Entier Snd]

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
</tr>
<tr>
<td>SNVT_amp_mil</td>
</tr>
<tr>
<td>SNVT_angle</td>
</tr>
<tr>
<td>SNVT_angle_vel</td>
</tr>
<tr>
<td>SNVT_btu_kilo</td>
</tr>
<tr>
<td>SNVT_btu_mega</td>
</tr>
<tr>
<td>SNVT_char_ascii</td>
</tr>
<tr>
<td>SNVT_config_src</td>
</tr>
<tr>
<td>SNVT_count</td>
</tr>
<tr>
<td>SNVT_count_inc</td>
</tr>
<tr>
<td>SNVT_data_day</td>
</tr>
<tr>
<td>SNVT_elec_kwh</td>
</tr>
<tr>
<td>SNVT_elec_whr</td>
</tr>
<tr>
<td>SNVT_flow</td>
</tr>
<tr>
<td>SNVT_flow_mil</td>
</tr>
<tr>
<td>SNVT_freq_h</td>
</tr>
<tr>
<td>SNVT_freq_kilohz</td>
</tr>
<tr>
<td>SNVT_freq_milhz</td>
</tr>
<tr>
<td>SNVT_grammage</td>
</tr>
<tr>
<td>SNVT_hvac_emerg</td>
</tr>
<tr>
<td>SNVT_hvac_mode</td>
</tr>
<tr>
<td>SNVT_length</td>
</tr>
<tr>
<td>SNVT_length_mic</td>
</tr>
<tr>
<td>SNVT_length_mil</td>
</tr>
<tr>
<td>SNVT_length_mil</td>
</tr>
<tr>
<td>SNVT_lev_count *</td>
</tr>
<tr>
<td>SNVT_lev_disc</td>
</tr>
<tr>
<td>SNVT_lev_percent *</td>
</tr>
<tr>
<td>SNVT_lux</td>
</tr>
</tbody>
</table>

* Ces SNVT n’ont pas de résolution décimale telles que 1, 0,1, 0,01 ou 0,001. Une conversion des valeurs transmises en dehors de la FBox peut s’avérer nécessaire.

<table>
<thead>
<tr>
<th>SNVT</th>
<th>Résolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_lev_cont</td>
<td>0,5</td>
</tr>
<tr>
<td>SNVT_lev_percent</td>
<td>0,005</td>
</tr>
</tbody>
</table>
7.3.2.5 SEND Entier Auto

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT amp</th>
<th>SNVT mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT amp mil</td>
<td>SNVT mass kilo</td>
</tr>
<tr>
<td>SNVT angle</td>
<td>SNVT mass meg</td>
</tr>
<tr>
<td>SNVT angle vel</td>
<td>SNVT mass mil</td>
</tr>
<tr>
<td>SNVT btu kilo</td>
<td>SNVT occupancy</td>
</tr>
<tr>
<td>SNVT btu mega</td>
<td>SNVT override</td>
</tr>
<tr>
<td>SNVT char ascii</td>
<td>SNVT power</td>
</tr>
<tr>
<td>SNVT config src</td>
<td>SNVT power kilo</td>
</tr>
<tr>
<td>SNVT count</td>
<td>SNVT ppm</td>
</tr>
<tr>
<td>SNVT count inc</td>
<td>SNVT press</td>
</tr>
<tr>
<td>SNVT data day</td>
<td>SNVT press p</td>
</tr>
<tr>
<td>SNVT elec kwh</td>
<td>SNVT res</td>
</tr>
<tr>
<td>SNVT elec whr</td>
<td>SNVT res kilo</td>
</tr>
<tr>
<td>SNVT flow</td>
<td>SNVT rpm</td>
</tr>
<tr>
<td>SNVT flow mil</td>
<td>SNVT sound db</td>
</tr>
<tr>
<td>SNVT freq h</td>
<td>SNVT speed</td>
</tr>
<tr>
<td>SNVT freq kilohz</td>
<td>SNVT speed mil</td>
</tr>
<tr>
<td>SNVT freq milh</td>
<td>SNVT telecom</td>
</tr>
<tr>
<td>SNVT grammage</td>
<td>SNVT temp</td>
</tr>
<tr>
<td>SNVT hvac emerg</td>
<td>SNVT temp p</td>
</tr>
<tr>
<td>SNVT hvac mode</td>
<td>SNVT time sec</td>
</tr>
<tr>
<td>SNVT length</td>
<td>SNVT vol</td>
</tr>
<tr>
<td>SNVT length kilo</td>
<td>SNVT vol kilo</td>
</tr>
<tr>
<td>SNVT length mic</td>
<td>SNVT vol mil</td>
</tr>
<tr>
<td>SNVT length mil</td>
<td>SNVT volt</td>
</tr>
<tr>
<td>SNVT lev count *</td>
<td>SNVT volt dbmv</td>
</tr>
<tr>
<td>SNVT lev disc</td>
<td>SNVT volt kilo</td>
</tr>
<tr>
<td>SNVT lev percent *</td>
<td>SNVT volt mil</td>
</tr>
<tr>
<td>SNVT lux</td>
<td></td>
</tr>
</tbody>
</table>

* Ces SNVT n’ont pas de résolution décimale telles que 1, 0,1, 0,01 ou 0,001. Une conversion des valeurs transmises en dehors de la FBox peut s’avérer nécessaire.

<table>
<thead>
<tr>
<th>SNVT</th>
<th>Résolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT lev_cont</td>
<td>0,5</td>
</tr>
<tr>
<td>SNVT lev percent</td>
<td>0,005</td>
</tr>
</tbody>
</table>
7.3.3 Valeurs de consignes de température

7.3.3.1 RCV Consignes Temp Rcv

<table>
<thead>
<tr>
<th>LON-Rcv</th>
<th>Rcv</th>
<th>OC</th>
<th>SC</th>
<th>UC</th>
<th>OH</th>
<th>SH</th>
<th>UH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_temp_setpt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorties/LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>OC</td>
</tr>
<tr>
<td>SC</td>
</tr>
<tr>
<td>UC</td>
</tr>
<tr>
<td>OH</td>
</tr>
<tr>
<td>SH</td>
</tr>
<tr>
<td>UH</td>
</tr>
<tr>
<td>LED</td>
</tr>
</tbody>
</table>

7.3.3.2 SEND Consignes Temp Snd

<table>
<thead>
<tr>
<th>LON-Send</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snd</td>
</tr>
<tr>
<td>OC</td>
</tr>
<tr>
<td>SC</td>
</tr>
<tr>
<td>UC</td>
</tr>
<tr>
<td>OH</td>
</tr>
<tr>
<td>SH</td>
</tr>
<tr>
<td>UH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_temp_setpt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entrées/LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snd</td>
</tr>
<tr>
<td>OC</td>
</tr>
</tbody>
</table>
7.3.4 Virgule flottante

7.3.4.1 RCV Virgule flottante

<table>
<thead>
<tr>
<th>Prises en charge</th>
<th>SNVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
<td>SNVT_mass</td>
</tr>
<tr>
<td>SNVT_amp_mil</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_single_vel_f</td>
<td>SNVT_ppm_f</td>
</tr>
<tr>
<td>SNVT_btu_f</td>
<td>SNVT_press_f</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
<tr>
<td>SNVT_count_inc_f</td>
<td>SNVT_res_f</td>
</tr>
<tr>
<td>SNVT_density_f</td>
<td>SNVT_sound-db_f</td>
</tr>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_volt_f</td>
</tr>
<tr>
<td>SNVT_level_cont_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
</tbody>
</table>

La LED est rouge en cas d’erreur de réception.

Tableau des états

<table>
<thead>
<tr>
<th>SC</th>
<th>Veille froid</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC</td>
<td>Disponible froid</td>
</tr>
<tr>
<td>OH</td>
<td>Occupé chaud</td>
</tr>
<tr>
<td>SH</td>
<td>Prêt chaud</td>
</tr>
<tr>
<td>UH</td>
<td>Disponible chaud</td>
</tr>
</tbody>
</table>

7.3.4.2 RCV Virgule flottante Rcv

<table>
<thead>
<tr>
<th>Prises en charge</th>
<th>SNVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp</td>
<td>SNVT_mass</td>
</tr>
<tr>
<td>SNVT_angle_f</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_single_vel_f</td>
<td>SNVT_ppm_f</td>
</tr>
<tr>
<td>SNVT_btu_f</td>
<td>SNVT_press_f</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
</tbody>
</table>
7.3.4.3 SEND Virgule flottante

<table>
<thead>
<tr>
<th>SNVT_count_inc_f</th>
<th>SNVT_res_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_density_f</td>
<td>SNVT_sound_db_f</td>
</tr>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_volt_f</td>
</tr>
<tr>
<td>SNVT_lev_cont_f</td>
<td></td>
</tr>
</tbody>
</table>

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT_amp</th>
<th>SNVT_mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_angle_f</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_sngle_vel_f</td>
<td>SNVT_ppm_f</td>
</tr>
<tr>
<td>SNVT_btu_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>SNVT_count_inc_f</td>
</tr>
<tr>
<td>SNVT_density_f</td>
<td>SNVT_sound_db_f</td>
</tr>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_volt_f</td>
</tr>
<tr>
<td>SNVT_lev_cont_f</td>
<td></td>
</tr>
</tbody>
</table>

7.3.4.4 SEND Virgule flottante Snd

<table>
<thead>
<tr>
<th>SNVT_amp</th>
<th>SNVT_mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_amp_mil</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_sngle_vel_f</td>
<td>SNVT_ppm_f</td>
</tr>
<tr>
<td>SNVT_btu_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>SNVT_count_inc_f</td>
</tr>
<tr>
<td>SNVT_density_f</td>
<td>SNVT_sound_db_f</td>
</tr>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_volt_f</td>
</tr>
<tr>
<td>SNVT_lev_cont_f</td>
<td></td>
</tr>
</tbody>
</table>
7.3.4.5 SEND Virgule flottante Auto

![Diagram of SEND Virgule flottante Auto]

<table>
<thead>
<tr>
<th>SNVT_density_f</th>
<th>SNVT_sound_db_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_lev_cont_f</td>
<td></td>
</tr>
</tbody>
</table>

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT_amp</th>
<th>SNVT_mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_angle_f</td>
<td>SNVT_power</td>
</tr>
<tr>
<td>SNVT_sngle_vel_f</td>
<td>SNVT_ppm_f</td>
</tr>
<tr>
<td>SNVT_btu_f</td>
<td>SNVT_press_f</td>
</tr>
<tr>
<td>SNVT_count_f</td>
<td>SNVT_pwr_fact_f</td>
</tr>
<tr>
<td>SNVT_count_inc_f</td>
<td>SNVT_res_f</td>
</tr>
<tr>
<td>SNVT_density_f</td>
<td>SNVT_sound_db_f</td>
</tr>
<tr>
<td>SNVT_elec_whr_f</td>
<td>SNVT_speed_f</td>
</tr>
<tr>
<td>SNVT_flow_f</td>
<td>SNVT_temp_f</td>
</tr>
<tr>
<td>SNVT_freq_f</td>
<td>SNVT_time_f</td>
</tr>
<tr>
<td>SNVT_grammage_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_length_f</td>
<td>SNVT_vol_f</td>
</tr>
<tr>
<td>SNVT_lev_cont_f</td>
<td></td>
</tr>
</tbody>
</table>
7.3.5 Date et heure

7.3.5.1 RCV Date et Heure

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT</th>
<th>timp_stamp</th>
</tr>
</thead>
</table>

Entrées/LED

<table>
<thead>
<tr>
<th>Rcv</th>
<th>Réception</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commute sur 1 pendant un cycle, dès que de nouvelles données sont réceptionnées.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YMD</th>
<th>Année, mois, jour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Format PCD. L'horloge du PCD est également réglée lors de la réception en fonction de l'option choisie.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HMS</th>
<th>Heure, minute, seconde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Format PCD. L'horloge du PCD est également réglée lors de la réception en fonction de l'option choisie.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La LED est rouge en cas d'erreur de réception.</td>
</tr>
</tbody>
</table>

7.3.5.2 SEND Date et Heure

SNVT prises en charge

<table>
<thead>
<tr>
<th>SNVT</th>
<th>timp_stamp</th>
</tr>
</thead>
</table>

Entrées/LED

<table>
<thead>
<tr>
<th>Snd</th>
<th>Envoi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Une impulsion sur « Snd » active le transfert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YMD</th>
<th>Année, mois, jour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Format PCD. Selon l'option choisie, les données sont lues par cette entrée ou directement par l'horloge PCD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HMS</th>
<th>Heure, minute, seconde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Format PCD. Selon l'option choisie, les données sont lues par cette entrée ou directement par l'horloge PCD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La LED est rouge en cas d'erreur d'envoi.</td>
</tr>
</tbody>
</table>
7.3.6 État

7.3.6.1 RCV État

SNVT prises en charge
SNVT_state

7.3.6.2 SEND État

SNVT prises en charge
SNVT_state

7.3.7 Alarme

7.3.7.1 RCV Alarme
SNVT prises en charge

| SNVT_alarm |

<table>
<thead>
<tr>
<th>Entrées/LED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcv</td>
<td>Réception</td>
</tr>
<tr>
<td>Loc</td>
<td>Emplacement</td>
</tr>
<tr>
<td>Id</td>
<td>ID d'objet</td>
</tr>
<tr>
<td>Type</td>
<td>Type d'alarme</td>
</tr>
<tr>
<td>Pri</td>
<td>Niveau de priorité</td>
</tr>
<tr>
<td>Idx</td>
<td>Index de SNVT</td>
</tr>
<tr>
<td>Val</td>
<td>Valeur</td>
</tr>
<tr>
<td>YMD</td>
<td>Année, mois, jour</td>
</tr>
<tr>
<td>HMS</td>
<td>Heure, minute, seconde</td>
</tr>
<tr>
<td>Ms</td>
<td>Milliseconde</td>
</tr>
<tr>
<td>Lim</td>
<td>Limite alarme</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
</tr>
</tbody>
</table>

La LED est rouge en cas d'erreur d'envoi.

7.3.7.2 SEND Alarme

LON-Send

- Snd
- Loc
- Loc
- Id
- Typ
- Pri
- Idx
- Val
- YMD
- HMS
- Ms
- Lim

SNVT prises en charge

| SNVT_temp_alarm |

<table>
<thead>
<tr>
<th>Entrées/LED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Snd</td>
<td>Transmission</td>
</tr>
<tr>
<td>Loc</td>
<td>Emplacement</td>
</tr>
</tbody>
</table>

Une impulsion sur « Snd » active le transfert.
4 octets à la première sortie, 2 octets à la seconde.
7.3.8 Objet

7.3.8.1 RCV État objet

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_obj_status</td>
</tr>
</tbody>
</table>

7.3.8.2 RCV Demande Objet

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_obj_request</td>
</tr>
</tbody>
</table>
7.3.9 Carte magnétique

7.3.9.1 RCV Carte magnétique

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_magcrd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entrées/LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>R0 à R4</td>
</tr>
<tr>
<td>LED</td>
</tr>
</tbody>
</table>

7.3.9.2 SEND Carte magnétique

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_magcrd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entrées/LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>R0 à R4</td>
</tr>
<tr>
<td>LED</td>
</tr>
</tbody>
</table>
7.3.10 Paramètres

7.3.10.1 RCV Paramètres

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entrées/LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcv</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>On</td>
</tr>
<tr>
<td>Dwn</td>
</tr>
<tr>
<td>Up</td>
</tr>
<tr>
<td>Sto</td>
</tr>
<tr>
<td>Sta</td>
</tr>
<tr>
<td>Set</td>
</tr>
<tr>
<td>Rot</td>
</tr>
<tr>
<td>LED</td>
</tr>
</tbody>
</table>

Dès la réception de nouvelles données, les valeurs de paramètres reçues (« setting ») et de rotation sont transmises aux sorties correspondantes. Si la fonction reçue est valide, la sortie binaire correspondante est activée et toutes les autres sorties sont mises à zéro. Si le code de fonction est invalide, toutes les autres sorties sont mises à 0.

Le paramètre (« setting ») représente une valeur de 0 à 200 et correspond à un niveau en ½ %.

La rotation représente une valeur de 1/100 degrés et s'échelonne de -359,98 à 360,00.
7.3.10.2 SEND Paramètres

<table>
<thead>
<tr>
<th>SNVT prises en charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_setting</td>
</tr>
</tbody>
</table>

Entrées/LED

<table>
<thead>
<tr>
<th>Off</th>
<th>Off</th>
<th>Fonction Off reçue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>Fonction On reçue.</td>
</tr>
<tr>
<td>Dwn</td>
<td>Down</td>
<td>Fonction Down reçue.</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Fonction Up reçue.</td>
</tr>
<tr>
<td>Sto</td>
<td>Stop</td>
<td>Fonction Stop reçue.</td>
</tr>
<tr>
<td>Sta</td>
<td>State</td>
<td>Fonction State reçue.</td>
</tr>
<tr>
<td>Set</td>
<td>Setting</td>
<td>Valeur de paramétrage reçue.</td>
</tr>
<tr>
<td>Rot</td>
<td>Rotation</td>
<td>Valeur de rotation reçue.</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
<td>La LED est rouge en cas d'erreur d'envoi.</td>
</tr>
</tbody>
</table>

Après réception d'un flanc positif, la fonction correspondante est transmise avec la valeur de rotation et de paramétrage.

Le paramètre (setting) représente une valeur de 0 à 200 et correspond à un niveau de ½ %.

La rotation représente une valeur de 1/100 degrés et s'échelonne de -359,98 à 360,00.
7.3.11 Autres Saia PG5® FBox

7.3.11.1 Diagnostic LON

FBox optionnelles destinées à indiquer les diagnostics du réseau LON.

<table>
<thead>
<tr>
<th>Affichage des erreurs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASI LON</td>
<td>Erreur fatale qui peut survenir lors de l'assignation du canal LON. Il s'agit en général d'un problème de firmware ou de matériel : - Mauvais firmware de PCD - Mauvais firmware du module LON - Module LON manquant - Module LON défectueux</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Indicateur de diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wink (indicateur)</td>
<td>Le message « Wink » s'affiche lorsque la fonction est activée.</td>
</tr>
<tr>
<td>1</td>
<td>Synchronisation</td>
<td>L'indicateur s'enclenche lorsqu'une erreur de synchronisation apparaît au démarrage ou lors de l'exécution du programme.</td>
</tr>
<tr>
<td>2</td>
<td>Diagnostic de réception</td>
<td>S'enclenche lorsque survient une erreur de réception. D'autres informations relatives aux erreurs possibles figurent dans le registre de diagnostic (bits 0 à 15). Dès que le registre de diagnostic est supprimé via le bouton du bas, l'indicateur est automatiquement mis à zéro.</td>
</tr>
<tr>
<td>3</td>
<td>Réinitialisation de l'interface LON</td>
<td>L'indicateur s'enclenche lorsque le nœud LON est réinitialisé.</td>
</tr>
<tr>
<td>4</td>
<td>Nouvelle liaison</td>
<td>Chargement d'une nouvelle liaison dans le PCD (nouvelles informations de connexion). Il faut cependant redémarrer avant le chargement de la liaison dans le configurateur LON.</td>
</tr>
<tr>
<td>5</td>
<td>Diagnostic de transmission</td>
<td>S'enclenche lorsque survient une erreur de transmission. D'autres informations relatives aux erreurs possibles figurent dans le registre de diagnostic (bits 16 à 31). Dès que le registre de diagnostic est supprimé via le bouton du bas, l'indicateur est automatiquement mis à zéro.</td>
</tr>
<tr>
<td>6</td>
<td>Interface occupée</td>
<td>S'enclenche lors de la synchronisation avec le réseau LON. Se met à zéro lorsque la synchronisation est terminée.</td>
</tr>
</tbody>
</table>
Nœud online
Lorsque les informations du module LON sont erronées ou que l'outil de liaison a mis le nœud hors ligne, le message « Not Online » (hors ligne) s'affiche. Si l'indicateur est enclenché, il n'est pas possible de recevoir ou d'envoyer de polling sur le réseau SNVT.
Lorsque s'affiche le message « Not Online » (hors ligne) et que la LED de service clignote régulièrement, l'outil de liaison doit commuter l'état du nœud LON sur « Configured » (configuré).

Registre de diagnostic

<table>
<thead>
<tr>
<th>Bit</th>
<th>Indicateur de diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Défaut d'interface LON</td>
<td>Réception de SNVT en trop grand nombre. Réception jusqu'à 80 SNVT simultanées possible (réception et transmission).</td>
</tr>
<tr>
<td>1</td>
<td>Données déjà présentes sur le réseau</td>
<td>S'enclenche lorsque le PCD reçoit une SNVT déjà envoyée par le PCD sans confirmation de la part du réseau LON.</td>
</tr>
<tr>
<td>2</td>
<td>NAK reçu lors du polling (SRXM)</td>
<td>Tentative de polling de SNVT et réception d'un NAK. Problème éventuel de liaison (liaison manquante, liaison incorrecte) ou aucune connexion entre le module et le réseau LON.</td>
</tr>
<tr>
<td>3</td>
<td>Non utilisé</td>
<td>S'enclenche lorsque le PCD tente d'envoyer une SNVT non définie. La configuration LON chargée dans le PCD est défectueuse ou ne concerne pas le projet actuel. Une nouvelle compilation du projet est nécessaire (via le bouton « Rebuild all ») ainsi qu'un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>4</td>
<td>SNVT non définie</td>
<td>S'enclenche lorsque le PCD tente d'envoyer une SNVT non définie. La configuration LON chargée dans le PCD est défectueuse ou ne concerne pas le projet actuel. Une nouvelle compilation du projet est nécessaire (via le bouton « Rebuild all ») ainsi qu'un nouveau chargement dans le PCD.</td>
</tr>
<tr>
<td>5</td>
<td>Type de SNVT non défini</td>
<td>Réception d'une SNVT dont le type n'est pas défini. Le configurateur LON doit être mis à jour.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>DB de SNVT non défini</td>
<td>Une mémoire de diagnostic a été endommagée, changée, supprimée ou a une capacité insuffisante. Une nouvelle compilation du projet est nécessaire ainsi qu'un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>7</td>
<td>Erreur de diagnostic</td>
<td>Une mémoire de diagnostic a été endommagée, changée, supprimée ou a une capacité insuffisante. Une nouvelle compilation du projet est nécessaire ainsi qu'un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>8</td>
<td>Taille de SNVT à partir du DB</td>
<td>S’enclenche lorsque le PCD reçoit du réseau une SNVT plus volumineuse que la place qui lui est réservée sur la mémoire du PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>9</td>
<td>Taille de SNVT à partir du réseau</td>
<td>S’enclenche lorsque le PCD reçoit du réseau une SNVT d’un volume différent de celui qui lui est réservé sur la mémoire du PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>10 à 15</td>
<td>Non utilisé</td>
<td>Non utilisé</td>
</tr>
</tbody>
</table>

Transmission

<table>
<thead>
<tr>
<th>Bit</th>
<th>Indicateur de diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Défaut d’interface LON</td>
<td>Transmissions de SNVT en trop grand nombre. Réception jusqu’à 80 SNVT simultanées possible (réception et transmission).</td>
</tr>
<tr>
<td>17</td>
<td>Données déjà présentes sur le réseau</td>
<td>Nouvelle tentative de transmission de variable par le PCD. La transmission antérieure n'a pas été confirmée par le réseau. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>18</td>
<td>NAK reçu lors d'une mise à jour (STXM)</td>
<td>NAK reçu lors d'une mise à jour (STXM).</td>
</tr>
<tr>
<td>19</td>
<td>Non utilisé</td>
<td>Non utilisé</td>
</tr>
<tr>
<td>20</td>
<td>SNVT non définie</td>
<td>S’enclenche lorsque le PCD tente d’envoyer une SNVT non définie. La configuration chargée dans le PCD est défectueuse ou ne concerne pas le projet actuel. Une nouvelle compilation du projet est nécessaire (via la touche « Rebuild all ») ainsi qu’un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>21</td>
<td>Type de SNVT non défini</td>
<td>Envoi d’une SNVT dont le type n’est pas défini. Le configurateur LON doit être mis à jour.</td>
</tr>
<tr>
<td>22</td>
<td>DB de SNVT non défini</td>
<td>Envoi d’une SNVT au réseau en l’absence de configuration de la SNVT concernée. Une nouvelle compilation du projet est nécessaire ainsi qu’un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>23</td>
<td>Erreur de diagnostic</td>
<td>Une mémoire de diagnostic a été endommagée, changée, supprimée ou a une capacité insuffisante. Une nouvelle compilation du projet est nécessaire ainsi qu’un nouveau chargement dans le PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>24</td>
<td>Taille de SNVT à partir du DB</td>
<td>S’enclenche lorsque le PCD envoie via le réseau une SNVT plus volumineuse que la place qui lui est réservée sur la mémoire du PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>25</td>
<td>Taille de SNVT à partir du réseau</td>
<td>S’enclenche lorsque le PCD envoie sur le réseau une SNVT dont le volume est différent de celui qui lui est réservé sur la mémoire du PCD. Contacter dans ce cas Saia Burgess Controls.</td>
</tr>
<tr>
<td>26 à 31</td>
<td>Non utilisé</td>
<td>Consulter le manuel LON pour de plus amples informations.</td>
</tr>
</tbody>
</table>
7.3.11.2 Diagnostic de SNVT

FBox optionnelle destinée à accéder aux diagnostics de toutes les FBox. La référence spécifie la FBox de destination. L'état de la LED est copié sur la sortie de la FBox. Vert = 0, rouge = 1.

Si une erreur s'affiche, il s'agit dans la plupart des cas d'un problème lors de la transmission de valeur.

Il faut tenir compte du fait que les erreurs graves concernant le module LON, la configuration ou la connexion réseau s'affichent dans la FBox de diagnostic LON.
8 Mise en service et débogage

Plusieurs difficultés peuvent survenir lors de la mise en place d'un projet LON. Le chapitre qui suit reprend certaines de ces difficultés et sont destinés à aider les programmateurs FUPLA à trouver une solution.

Configuration minimale requise pour la mise en place d'un projet LON :

- Module LON F80x
- PCD2 à partir de l'indice matériel « J », avec au min. 4 Mo de RAM interne
- Firmware avec capacités LON pour PCD1 ou PCD2
- PG4 avec fonctions LON (à partir de 2.0 avec spec. SNET)
- PG4 et firmware adaptés au LON

8.1 Messages d'historique

Si l'exécution d'un projet LON devait s'avérer impossible après un téléchargement, il peut être utile de vérifier l'historique (« History ») pour découvrir l'origine de l'erreur.

<table>
<thead>
<tr>
<th>Historique/message</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON FAIL 000</td>
<td>Éventuelle erreur de syntaxe dans le texte SASI « MODE:LON;CONF:DBX000; DIAG:Faaa, Fbbb,Fccc,Rddd; » Le texte SASI peut s'afficher dans le débogueur : - Display program (SASI 9) - Le numéro du texte de situe à la 2e ligne - Le texte xxx peut maintenant s'afficher</td>
<td>Syntaxe à vérifier pour : MODE LON CONFIG DBX DIAG F et R</td>
</tr>
<tr>
<td></td>
<td>Numéro de DBX trop élevé</td>
<td>Demande du nombre limite de DBx (actuellement 4)</td>
</tr>
<tr>
<td></td>
<td>DBX inexistant dans la mémoire PCD</td>
<td>Le configurateur a généré un DBx dont le numéro ne correspond à celui du texte SASI. Le configurateur n'a pas généré le DBx.</td>
</tr>
<tr>
<td></td>
<td>Adresses d'indicateur/de registre en dehors de la plage</td>
<td>La plage de l'indicateur se situe entre 0 et 8 191 et celle du registre entre 0 et 4 095.</td>
</tr>
<tr>
<td>LON FAIL 001</td>
<td>L'utilisateur tente d'utiliser un LON SASI sans module correspondant sur le PCD2.</td>
<td>Utiliser un module LON (F800/F802/F804) dans le PCD2.</td>
</tr>
<tr>
<td>LON FAIL 002</td>
<td>Un bloc de données du firmware LON, masqué pour l'utilisateur, n'existe pas ou n'est pas défini correctement.</td>
<td>Se rapprocher d'un spécialiste SBC pour solutionner ce problème.</td>
</tr>
</tbody>
</table>
Compléments d'informations concernant LON avec Saia PCD®

8.2 Compléments d'informations concernant LON avec Saia PCD®

Indications pour la connexion des variables réseau (liaison) :

Chaque nœud LON (puce Neuron®) ne dispose que d'une table d'adressage de 15 entrées au maximum. Il en va de même pour la puce Neuron® sur la carte PCD6.F8xx, c'est-à-dire qu'un nœud ne peut adresser directement qu'un maximum de 15 autres nœuds. Il est cependant possible de dépasser cette limite via l'option de liaison de l'outil d'installation.

Selon le type de liaison des variables réseau, il existe différentes catégories d'entrées de liaison dans cette table. Si la communication doit s'établir avec un maximum d'autres nœuds du PCD, il est recommandé d'utiliser la liaison de type « Broadcast ».

Si la liaison de deux nœuds est établie via les variables réseau avec un outil de liaison, les options suivantes doivent être paramétrées :

« Broadcast, unacknowledged » (broadcast, sans accusé de réception) ou « Broadcast, unacknowledged, repeated » (broadcast, sans accusé de réception, répétition) (charge de bus plus importante)
En règle générale, pour une option de liaison normale, l'outil de liaison prend en charge les entrées de la table d'adressage des nœuds via l'option « Sub-Net/Node » (sous-réseau/nœud) ou « Group » (groupe).

<table>
<thead>
<tr>
<th>Option de liaison</th>
<th>Application souhaitée</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubNet/Node (sous-réseau/nœud)</td>
<td>Le nœud A transmet au nœud B</td>
</tr>
<tr>
<td>Group (groupe)</td>
<td>Le nœud A transmet aux nœuds B, B et... X</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Le nœud A transmet à tous les nœuds du sous-réseau</td>
</tr>
</tbody>
</table>

Tableau 9-2 : Options de liaison

L'option de liaison « Group » (groupe) est appliquée automatiquement par de nombreux outils de liaison lorsqu'une variable réseau doit être transmise d'un nœud vers plusieurs autres nœuds.

NŒUD A :

Table d'adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/ Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sb/Nd</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Gspz 3</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>3</td>
<td>768</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3..13</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-3 : exemple de table d'adressage, nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-4 : exemple de table de domaine, nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>Ad-dridx</th>
<th>Service</th>
<th>Tr-nArnd</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0002</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0003</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0004</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-5 : exemple de table de variables, nœud A
Saia PCD® :

Table d’adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/ Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sb/Nd</td>
<td>0</td>
<td>3</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Sb/Nd</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Gspz 3</td>
<td>0</td>
<td>1</td>
<td>32</td>
<td>3</td>
<td>768</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>3..13</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-3 : exemple de table d’adressage, nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-4 : exemple de table de domaine, nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>Addridx</th>
<th>Service</th>
<th>TrnArnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>0001</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>0005</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>0006</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>000E</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>16</td>
<td>000C</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>17</td>
<td>000B</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Ackd</td>
<td>no</td>
</tr>
</tbody>
</table>

Tableau 9-5 : exemple de table de variables, nœud A
NŒUD B :

Table d’adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/ Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sb/Nd</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Gspz 3</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>3</td>
<td>768</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3..13</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-3 : exemple de table d’adressage, nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-4 : exemple de table de domaine, nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>Addridx</th>
<th>Service</th>
<th>TrnArnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>000F</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>77</td>
<td>0010</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
</tr>
<tr>
<td>110</td>
<td>000D</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>Ackd</td>
<td>no</td>
</tr>
</tbody>
</table>

Tableau 9-5 : exemple de table de variables, nœud A
On peut déduire la structure de liaison suivante à partir des tables :

<table>
<thead>
<tr>
<th>Flèche rouge</th>
<th>Flèche verte</th>
<th>Flèche bleue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le nœud A envoie les variables 1 et 2 au PCD et la variable 5 au nœud B.</td>
<td>Le PCD envoie les variables 0 et 3 au nœud A et les variables 7, 8, 9, 16 et 17 au nœud B.</td>
<td>Le nœud B envoie les variables 28, 77 et 110 au PCD.</td>
</tr>
</tbody>
</table>

Illustration 9-1 : Structure de liaison

Seules les variables de sortie nécessitant une entrée d'adresse en règle générale, la représentation des variables d'entrées a été écartée.

L'adresse commune de groupe 3 a été entrée dans la table d’adressage pour les trois nœuds bien que le nœud A soit le seul à procéder à un envoi via cette liaison. Pour les adresses de groupe, il faut procéder à une entrée dans la table d’adressage dans chacun des nœuds du groupe pour que ces derniers puissent recevoir les données transmises.

En ce qui concerne le PCD, un total de 3 lignes est utilisé dans la table d’adressage pour cet exemple. Si on ajoute d’autres nœuds de type A et qu’on les connecte avec le PCD et le nœud B de la même manière, la table d’adresse du nœud LON du PCD serait rapidement pleine.

Signification des tables dans les nœuds LON :

<table>
<thead>
<tr>
<th>Table</th>
<th>Signification</th>
<th>Lignes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table d’adressage</td>
<td>Liste des connexions disponibles</td>
<td>15</td>
</tr>
<tr>
<td>Table de domaine</td>
<td>Adresse du nœud en tant que sous-réseau/nœud</td>
<td>1</td>
</tr>
<tr>
<td>Table de variables</td>
<td>Liste de toutes les variables réseau et des liaisons par lesquelles elles doivent être transmises.</td>
<td>normal : 63, 4 0961 pour le PCD</td>
</tr>
</tbody>
</table>

Tableau 9-12 : signification des tables dans les nœuds LON

1) La table de variables est étendue à 4 096 par le nœud hôte du MIP.
Effet de l'option de liaison « Broadcast » sur la liaison :

NOEUD A :

Table d'adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp/Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>3..13</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-13 : exemple de broadcast, table d'adressage du nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-14 : exemple de broadcast, table de domaine du nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>AdrIdx</th>
<th>Service</th>
<th>Tr-nArnd</th>
<th>Grp/Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0013</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>2</td>
<td>Rep/tl</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0014</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>2</td>
<td>Rep/tl</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0015</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>2</td>
<td>Rep/tl</td>
<td>no</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-15 : exemple de broadcast, table de variables du nœud A
Saia PCD® :

Table d'adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/ Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Bcast</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>3</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>4...14</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-16 : exemple de broadcast, table d'adressage du nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-17 : exemple de broadcast, table de domaine du nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>Addridx</th>
<th>Service</th>
<th>TrnArnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0011</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>0012</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>0016</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>0017</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>001B</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>16</td>
<td>0018</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
<tr>
<td>17</td>
<td>0019</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>Rep:td</td>
<td>no</td>
</tr>
</tbody>
</table>

Tableau 9-18 : exemple de broadcast, table de variables du nœud A
NŒUD B :

Table d'adressage

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Domain</th>
<th>Mbr/ Nod</th>
<th>Rpt tmr</th>
<th>Retries</th>
<th>Rcv tmr</th>
<th>Tx tmr</th>
<th>Grp / Sbnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Bcast</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>128</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>4..15</td>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>128</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 9-19 : exemple de broadcast, table d'adressage du nœud A

Table de domaine

<table>
<thead>
<tr>
<th>Index</th>
<th>Size</th>
<th>Subnet</th>
<th>Node</th>
<th>Auth Key</th>
<th>Domn ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>FF FF FF FF FF FF</td>
<td>01</td>
</tr>
</tbody>
</table>

Tableau 9-20 : exemple de broadcast, table de domaine du nœud A

Table de variables

<table>
<thead>
<tr>
<th>Index</th>
<th>Selctr</th>
<th>Dir</th>
<th>Prio</th>
<th>Auth</th>
<th>Addridx</th>
<th>Service</th>
<th>TrnArnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>001C</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Rep-td</td>
<td>no</td>
</tr>
<tr>
<td>77</td>
<td>001D</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Rep-td</td>
<td>no</td>
</tr>
<tr>
<td>110</td>
<td>001A</td>
<td>out</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>Rep-td</td>
<td>no</td>
</tr>
</tbody>
</table>

Tableau 9-21 : exemple de broadcast, table de variables du nœud A

Comme on peut le voir, une seule entrée est utilisée à chaque fois dans la table d'adressage du nœud. Cet adressage en broadcast permet de transmettre les informations à tous les nœuds du réseau. Aussi bien l'émetteur que le récepteur reçoivent l'entrée d'adresse de broadcast dans leurs tables d'adressage. Les entrées d'adresse utilisées auparavant sont supprimées lors de la liaison et l'entrée libre suivante est utilisée. Si un nœud transmet simultanément une variable réseau à plusieurs nœuds, aucune entrée de groupe supplémentaire n'est nécessaire.

Pour l'option de liaison « Broadcast », une seule entrée d'adresse est à présent utilisée dans le PCD contre trois pour une liaison normale. Lorsqu'une liaison est réalisée avec l'option de liaison « Broadcast », le PCD peut communiquer avec un nombre illimité de nœuds.
Paramétrage de l'option de liaison « Broadcast » dans l'outil de liaison

Paramétrage dans l'outil Pathfinder (version 1.5) de la société T-LON :

Illustration 9-2
options de liaison normales
(outil « Pathfinder »)

Illustration 9-3
options de liaison broadcast
(outil « Pathfinder »)

Paramétrage dans l'outil Alex (version 1.0) de la société Mentzel & Krutmann :

Illustration 9-4
options de liaison normales
(outil « Alex »)

Illustration 9-5
options de liaison Broadcast
(outil « Alex »)
9 Définitions, abréviations et bibliographie

9.1 Définitions

3120 Puce NEURON® 3120. Puces MOTOROLA/TOSHIBA avec EEPROM interne, RAM et interface LON intégrée pour communication en réseau sur la couche 7 du modèle OSI.

3150 Puce NEURON® 3150. Puces MOTOROLA/TOSHIBA avec EEPROM interne, EPROM externe et interface LON intégrée pour communication en réseau sur la couche 7 du modèle OSI.

Table d’adressage Table d’une puce Neuron® qui définit l’affiliation de groupes d’un nœud et l’adresse de transmission d’une variable réseau connectée. Il est possible de définir 15 tables d’adressage différentes sur une puce Neuron®.

Variable réseau alias Place secondaire dans une table de variables réseau qui référence une « primary netvar ». Une variable réseau alias est utilisée en parallèle à une variable réseau primaire et permet la liaison multiple de données (par exemple, Reset-Kdo via Group-Address, Kdos normaux via l’adresse de sous-réseau/nœud).

Application Image (image d’application) Programme applicatif capable de fonctionner sur une puce Neuron®.

Application message (message d’application) « Explicit Message » (message explicite) dont le code de message est compris entre 0x00 et 0x3e (62 d). C’est à l’application que revient l’interprétation du code.

Binder Outil logiciel capable de connecter des variables réseaux ou des « msg_tags ».

Binding (liaison) Processus qui définit la liaison entre les nœuds.

Bridge (pont) Routeur doté de deux puces Neuron® qui reproduit de chaque côté les messages de 2 domaines au maximum.

Broadcast Mode d’adressage qui contacte simultanément tous les nœuds d’un sous-réseau ou d’un domaine.

Channel (canal) Partie physique d’un bus LON, par exemple entre 2 routeurs.
cloned_domain

Domaines de plusieurs nœuds dont les bits « must_be_one » ont été mis à 0. Un « cloned_domain » n'est utilisé que dans des cas exceptionnels et n'est pas conforme aux « directives d'interopérabilité » LonMark®. Dans un « cloned_domain », il n'est plus possible d'appliquer l'adressage sous-réseau/nœud. Pour travailler dans de tels domaines, on fait appel à l'adressage de « broadcast » et de « NeuronID ».

cloned_node

Nœud dont le bit « must_be_one » est mis à 0. Il peut recevoir des messages de nœuds qui travaillent avec la même adresse sous-réseau/ nœud et est placé sur le LONBUILDER® lors de l'exportation du MIP ou via la fonction « update_clone_domain ».

Configuration network variable (variable réseau de configuration)

Classe spécifique de variables réseau qui permet d'enregistrer des données de configuration de l'application. Les données de configuration sont toujours des variables d'entrée sauvegardées dans l'EEPROM. Pour les « Host based nodes » (nœuds basés sur un hôte), l'hôte doit assurer le classement des données sur un emplacement de stockage non volatile.

Configured Router (routeur configuré)

Routeur doté de 2 puces Neuron® qui sait quels télégrammes transmettre grâce aux données de configuration.

Connection (liaison)

Adresse implicté installé par la liaison. Une connexion s'établit entre deux nœuds participants ou plus.

Declared msg_tag

« Msg_tags » définis dans les nœuds de l'application. Les « msg_tags » déclarés sont toujours bidirectionnels.

Differential-LON-Interface (interface LON différentiel)

Interface LON sur ligne bifilaire isolée galvaniquement à l'aide d'un transformateur d'isolation. Le taux de transfert, dans la majorité des applications, s'élève à 78,1 kbps.

Domain (domaine)

Liaison logique de plusieurs nœuds à un ou plusieurs canaux. À moins qu'un routeur ne relie deux domaines, la communication ne peut s'établir qu'entre les nœuds d'un même « DomainID » (ID de domaine).

DomainID (ID de domaine)

Niveau hiérarchique d'adresse le plus élevé du bus LON. La longueur de l'ID peut être de 0, 1, 3 ou 6 octets. La longueur 0 est réservée aux nœuds NSS-10 pour la coordination des tâches d'installation et ne doit pas être utilisée par les nœuds de l'application.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink (liaison descendante)</td>
<td>Transmission de données d'un hôte vers une puce Neuron®, en règle générale via le port parallèle.</td>
</tr>
<tr>
<td>Explicit address (adresse explicite)</td>
<td>Adresse créée et gérée par l'application (MIP, par exemple) et contenue dans le message.</td>
</tr>
<tr>
<td>Explicit message (message explicite)</td>
<td>Message déclenché explicitement par un Neuron® ou par une application hôte. Son contenu et l'heure de sa transmission sont définis par le code d'application.</td>
</tr>
<tr>
<td>Flush</td>
<td>L'état Flush d'une interface MIP signifie que les messages transmis sur le bus LON ne sont pas enregistrés. Après une réinitialisation, le MIP se trouve en état flush. L'application hôte dispose ainsi d'un temps de démarrage suffisant.</td>
</tr>
<tr>
<td>Flush cancel (annulation flush)</td>
<td>Pour que l'interface MIP enregistre les messages LON, la commande « Flush Cancel » (annulation Flush) doit être activée après une réinitialisation via le port parallèle. Lorsque la puce Neuron® indique « Flush complete » (Flush terminé), l'application hôte est alors connectée au bus LON.</td>
</tr>
<tr>
<td>Free Topology Transceiver (transmetteur de topologie libre)</td>
<td>Transmetteur actif de 78,1 kbps qui permet une topologie de bus libre. Un bus LON avec technologie FTT peut être mis en fonctionnement à une distance maximale de 400 m. Au bout de chaque segment de 400 m, un répéteur à couche physique doit être installé (2 ou 4 voies, avec un FTT par voie). Le réseau peut ainsi atteindre une longueur totale pratiquement illimitée.</td>
</tr>
<tr>
<td>Gateway (passerelle)</td>
<td>Pont de données qui échange des données sur la couche application. La passerelle peut être utilisée entre deux domaines ou entre deux protocoles de réseau différents.</td>
</tr>
<tr>
<td>Group (groupe)</td>
<td>Possibilité de former des groupes logiques au-delà de la limite du sous-réseau. Le nombre maximum de groupes différents obtenus est de 256.</td>
</tr>
<tr>
<td>Group address (adresse de groupe)</td>
<td>Possibilité d'adresser des groupes logiques ou des membres de groupes au-delà de la limite du sous-réseau.</td>
</tr>
<tr>
<td>Group ID (ID de groupe)</td>
<td>Numéro d'identification d'un groupe. Chaque groupe est défini par un numéro de groupe (unique) compris entre 0 et 255. Le numéro 0 s'applique aux « huge groups » (groupes illimités) qui comportent un nombre illimité de membres.</td>
</tr>
<tr>
<td>Définitions</td>
<td>Définitions, abréviations et bibliographie</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Group member (membre de groupe)</td>
<td>Numéro de membre au sein d'un groupe. Le nombre maximum de membres adressables d'un groupe est de 64. Il n'existe aucun nombre limite pour les membres de groupes non adressables via leur identification de membre.</td>
</tr>
<tr>
<td>Host (hôte)</td>
<td>Microprocesseur qui a intégré la couche 7 du protocole LON. Il peut s'agir d'un microprocesseur couplé à la puce Neuron® ou d'une puce Neuron®.</td>
</tr>
<tr>
<td>Host application (application hôte)</td>
<td>Il s'agit d'un programme applicatif intégré à un hôte.</td>
</tr>
<tr>
<td>Host based node (nœud basé sur l'hôte)</td>
<td>Nœud dans lequel la couche 7 du protocole LON-TALK® est capable de fonctionner dans un microprocesseur autre qu'une puce Neuron®.</td>
</tr>
<tr>
<td>Hub</td>
<td>C'est le cœur d'une liaison. Le hub (concentrateur) dispose soit d'une entrée et de plusieurs sorties, soit de plusieurs sorties et d'une seule entrée.</td>
</tr>
<tr>
<td>Implicit address (adresse implicite)</td>
<td>Adresse implicite contenue dans l'EEPROM du Neuron® et utilisée lors de l'accès à une variable réseau ou à une « msg_tag ». L'application référence l'adresse via le sélecteur de variable réseau ou via la « msg_tag ».</td>
</tr>
<tr>
<td>Implicit message (message implicite)</td>
<td>Message déclenché par le noyau Neuron® lorsque l'application assigne des données à une variable réseau. Il est transmis lors de la première exécution du planificateur Neuron®, après l'assignation des données.</td>
</tr>
<tr>
<td>Directives d'interopérabilité</td>
<td>Directives contraintes pour lesquelles il est possible d'obtenir une certification. Un produit certifié selon ces règles est autorisé à porter le logo LonMark®.</td>
</tr>
<tr>
<td>Interopérabilité, nœud interopérable</td>
<td>Classification de produit qui garantit que les nœuds de différents fabricants peuvent être intégrés dans un même réseau. Aucun outil client ou développement spécifiques n'est nécessaire à leur installation. L'interopérabilité est assurée par la certification LonMark®.</td>
</tr>
<tr>
<td>Intersecting connections</td>
<td>Ensemble de liaisons partageant plus d'une liaison globale (liaison multiple de variables).</td>
</tr>
<tr>
<td>Nœud</td>
<td>Nœud tel qu'il est défini dans la technologie de bus LON : application avec interface LON.</td>
</tr>
<tr>
<td>Routeur d'apprentissage</td>
<td>Routeur équipé de deux puces Neuron®. Il s'apprend quels sont les messages à transmettre grâce au trafic réseau entrant.</td>
</tr>
<tr>
<td>Definition</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Link Layer (couche liaison)</td>
<td>Couche de transmission qui définit l'accès au média de transmission ainsi que le format de transmission. Voir également sous OSI-Layer 1-7.</td>
</tr>
<tr>
<td>Bus LON</td>
<td>Bus de terrain défini par la société Echelon. Il peut être contrôlé au moyen des puces Neuron®. Il s'agit d'un bus standard capable de transmettre un protocole normalisé via les médias les plus variés tels que ligne bifilaire, fibre optique, liaisons micro-ondes, liaisons radio, transmission de réseau, etc.</td>
</tr>
<tr>
<td>LonBuilder®</td>
<td>Outil de développement avec émulateurs et routeurs qui rendent possible le développement de nœuds uniques et de réseaux entiers.</td>
</tr>
<tr>
<td>LonManager®</td>
<td>Ensemble d'outils logiciels et matériels permettant l'installation, la configuration, la maintenance, la surveillance et le contrôle d'un réseau LonMark®.</td>
</tr>
<tr>
<td>LonMark®</td>
<td>Programme de certification qui garantit la compatibilité de produits de différents fabricants.</td>
</tr>
<tr>
<td>LonTalk®</td>
<td>Protocole de standardisation de la communication utilisé sur les réseaux LonWorks®. Ce protocole définit la norme d'échange des informations de chaque nœud.</td>
</tr>
<tr>
<td>LonTalk® file transfer protocol (protocole de transfert de fichier LonTalk®)</td>
<td>Chemin défini pour l'échange de fichiers de données entre les nœuds. Les types de fichiers 0 et 1 sont définis en tant que fichiers de données de configuration par LonMark®.</td>
</tr>
<tr>
<td>LonWorks®</td>
<td>Ensemble d'outils et de composants pour la création d'un réseau de neurones de capteurs, d'actionneurs et d'appareils de contrôle.</td>
</tr>
<tr>
<td>Mapper</td>
<td>Nœud qui reproduit dans les SNVT des données basées sur des messages explicites, en conformité avec la norme LonMark®.</td>
</tr>
<tr>
<td>Message code (code message)</td>
<td>Champ de définition du type de message contenu dans un message explicite.</td>
</tr>
<tr>
<td>Microprocessor interface program (programme d'interface microprocesseur)</td>
<td>Firmware qui reproduit les télégrammes reçus sur le bus dans la mémoire tampon de l'application. De cette façon, les couches 4 à 7 LonTalk® peuvent être implémentées dans un micro-ordinateur puissant.</td>
</tr>
<tr>
<td>msg_in</td>
<td>« Msg_tag » présent par défaut sur tous les nœuds pour la réception les messages entrants. « Msg_in » ne peut pas être utilisé pour les messages sortants.</td>
</tr>
</tbody>
</table>
msg_tag
Variable dans l'EEPROM qui rend possible l'intégration de messages explicites dans les informations d'adressage de l'EEPROM. Sert à l'adressage implicite des messages explicites et fonctionne en principe comme une variable réseau pour messages. « Msg_tag » est toujours bidirectionnelle pour l'entrée et la sortie.

Réseau
Sous-système

Adresse réseau
Adresse logique d'un nœud (domaine/sous-réseau/nœud).

Network driver (driver réseau)
Logiciel qui fonctionne sur un hôte (autre qu'une puce Neuron®) pour exploiter l'interface réseau (raccordement à la puce Neuron®).

Network image (image réseau)
Adresse réseau d'un nœud et de ses informations de liaison. Une image réseau se compose de la table de configuration de domaine, d'adresse et de variable réseau. Elle se trouve dans l'EEPROM de la puce Neuron® ou est hébergée sur l'hôte dans le cas d'applications hôtes (table de configuration de variable réseau).

Network interface (interface réseau)
Équipement permettant de coupler la couche 6 du réseau à un hôte (par exemple, adaptateur PC LonTalk® PCLTA).

Network interface API (API d'interface réseau)
Bibliothèque logicielle (source C) prenant en charge les fonctions de communication de base. Elle est incluse dans le kit développeurs NSS-10.

Network Layer (couche réseau)
Couche de transmission qui assure l'adressage de destination. Voir également sous OSI-Layer 1-7.

Network management (gestion de réseau)
Processus consistant à définir, à installer et à maintenir un réseau de manière logique.

Network services API (API de services réseau)
Bibliothèque logicielle (source C) qui prend en charge les fonctions de service de base. Elle est incluse dans le kit développeurs NSS-10.

Network variable (variable réseau)
Objets de haut niveau utilisés pour la communication entre les nœuds d'application. Le type, la fonction et le nombre de variables réseau sont définis par le code d'application du nœud. Les variables réseau donnent lieu à une forme de communication simple, notamment dans le cas de l'utilisation d'applications hôtes à puce Neuron®.
Définitions

Network variable configuration table (table de configuration de variable réseau)

Table qui assigne un sélecteur à des indices de variable réseau. Une table d'adresse est assignée et connectée en supplément pour les variables « downlink » (liaison descendante). Pour les nœuds hébergés sur puce Neuron®, la table se trouve dans l'EEPROM de la puce Neuron®. Elle est sauvegardée sur l'hôte pour les applications hôtes, au cas où le MIP est créé avec la condition « netvar_processing_off ».

Network variable index (indice de variable réseau)

Numéro utilisé pour identifier la variable réseau. Les numéros d'indices sont assignés par le compilateur Neuron® C sur la base de la position de la variable dans la section de déclaration. La première variable correspond à l'indice 0. Les nœuds hébergés à puce Neuron® peuvent traiter au maximum jusqu'à l'indice 61, et les applications hôtes peuvent être étendues jusqu'à l'indice 4095.

Network variable selector (sélecteur de variable réseau)

Numéro de 14 bits destiné à identifier la liaison entre les variables réseau. Les numéros de sélecteurs sont attribués par les nœuds chargés de l'installation.

Neuron Chip-hosted node (nœud hébergé sur puce Neuron®)

Nœud sur lequel la couche 7 du protocole LON-TALK® est implémentée dans une puce Neuron®.

Puce NEURON®

Terme dérivé du neurone (cellule) qui désigne un circuit intégré contenant une interface LON et qui permet d'implémenter une application.

NeuronID (ID Neuron®)

Numéro d'identification unique de 48 bits gravé sur chaque puce Neuron® lors de leur fabrication. Chaque numéro est la garantie d'une pièce unique.

Node

Nœud. Installation contenant les couches 1 à 6 du protocole LON-TALK® ainsi qu'une puce Neuron®, un transmetteur LON, de la mémoire et un support matériel.

NodeID (ID de nœud)

Niveau hiérarchique d'adresse inférieur LON-TALK® qui se constitue du domaine/sous-réseau et du nœud. Lors de l'installation, chaque nœud se voit attribuer une combinaison unique sous-réseau/nœud. Exception : « cloned_node ». 127 ID de nœuds différents peuvent être définis (1 à 127). L'ID de nœud 0 est utilisé pour un nœud qui n'est pas encore installé.

OSI-Layer 1-7 (couches 1 à 7 du modèle OSI)

Couche 7 : Couche application. Compatibilité au niveau de l'application : Types de variables réseau standards.
Couche 6 : Couche présentation. Interprétation de données : Variables réseau, transmission de trame étrangère.

Couche 5 : Couche session. Actions à distance : Request-Response (requête réponse), authentication, gestion du réseau, interface du réseau.

Couche 4 : Couche transport. Fiabilité point par point : Ackd/Unackd Service (service avec/sans accusé de réception), Unicast/Multicast Authentication (authentification unique/double), assignation d'adresse et contrôle des doubles entrées.

Couche 3 : Couche réseau. Adressage de destination : Routeur d'adressage.

Couche 2 : Couche liaison de données. Accès au média de transmission et au format de transmission : Framing (trames), Data Encoding (encodage de données), CRC Error Checking (vérification d'erreurs CRC), CSMA, évitement de collisions, détection de priorité et de collision (optionnelle).

Couche 1 : Couche physique. Raccordement électrique : paire torsadée, ligne électrique, fréquences radio, câble coaxial, rayons infrarouges, fibre optique, RS-485, etc.

Physical Layer (couche physique)

Couche de transmission qui définit le raccordement électrique. Voir également sous OSI-Layer 1-7.

Poll

« Explicit Request » (requête explicite) auprès d'un nœud pour l'envoi d'une valeur de variable et du sélecteur correspondant.

Polled network variable

Variable réseau d'entrée qui n'envoie son contenu que sur la base des pollings. Normalement, les variables réseau envoient automatiquement leur contenu lorsque ce dernier a été modifié (à savoir lorsque la variable a été décrite par l'application).

Polling network variable

Variable réseau d'entrée qui ne met à jour son contenu que sur la base des pollings à une variable de sortie.

Presentation Layer (couche présentation)

Couche de transmission qui détermine la présentation des données. Voir également sous OSI-Layer 1-7.
Définitions

Priority (priorité)
Mécanisme pris en charge par le protocole LonTalk® pour la transmission de messages prioritaires. Les messages prioritaires sont transmis avant les messages normaux via un emplacement réservé. Convient particulièrement pour la transmission d'informations déterminées (horodatage, données temporelles critiques).

Processed netvar
Adressage de la variable réseau au moyen d'une adresse implicite, à savoir grâce aux informations d'adressage contenues dans l'EEPROM de la puce Neuron®.

Program ID (ID de programme)
Chaîne d'identification sauvegardée dans l'EEPROM de la puce Neuron®. Cette chaîne est utilisée pour l'identification du programme applicatif. Tous les nœuds avec le même ID de programme doivent disposer de la même interface externe pour éviter tout problème avec les outils d'installation. Les nœuds interopérables certifiés par LONMARK® contiennent un ID de programme standard.

Property (propriété)
Attribut d'un objet, par exemple l'emplacement d'un nœud.

Repeater (répéteur)
Routeur disposant de deux puces Neuron® ou répéteur physique qui reproduit tous les messages d'un canal sur le prochain canal.

Self-documentation (auto-documentation)
Mécanisme qui permet au nœud de l'application d'installer des informations descriptives dans l'EPROM.

Self-identification (auto-identification)
Mécanisme qui rend possible la documentation des variables SNVT dans la PROM des nœuds d'application (ID de SNVT). Ces informations peuvent être extraites lors de l'installation au moyen d'un outil logiciel adapté.

Serial LonTalk® Adapter (adaptateur LonTalk® série)
Interface réseau basée sur un port EIA-232. Ces informations peuvent être extraites lors de l'installation au moyen d'un outil logiciel adapté.

Session Layer (couche session)
Couche de transmission qui définit les accès externes (actions à distance). Voir également sous OSI-Layer 1-7.

SMX-compatible transceiver (transmetteur compatible SMX)
Tout transmetteur qui utilise le code de détection Standard Modular Transceiver.

Standard network object (objet de réseau standard)
Collection de variables réseau au comportement adéquat, conformément aux exigences des directives d'interopérabilité LONMARK®.
<table>
<thead>
<tr>
<th>Définitions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Network Variable</td>
<td>Les types de variables réseau standards sont des variables normalisées par LonMark® qui permettent d'échanger facilement des données entre les nœuds de différents fabricants.</td>
</tr>
<tr>
<td>Type (type de variable réseau standard)</td>
<td>Code normalisé assigné à un type de variables correspondant. Il est parfois nommé indice SNVT dans les documents Echelon. Un ID de SNVT est toujours différent de 0, 0 signifiant que les variables en question ne sont pas des variables SNVT.</td>
</tr>
<tr>
<td>Type ID (ID de SNVT)</td>
<td>ID de programme d'un nœud certifié conforme aux directives d'interopérabilité LonMark®. Il permet d'émettre des conclusions relatives au fabricant, à l'application et à la version du logiciel.</td>
</tr>
<tr>
<td>Subsystem (sous-système)</td>
<td>Un ou plusieurs nœuds qui remplissent des fonctions communes. La configuration de tous les nœuds d'un sous-système est réalisée par un seul outil d'installation.</td>
</tr>
<tr>
<td>Subnet (sous-réseau)</td>
<td>Sous-réseau logique à l'intérieur d'un domaine. Il peut contenir au maximum 127 nœuds. Un domaine peut quant à lui contenir 255 sous-réseaux.</td>
</tr>
<tr>
<td>subnet / node address</td>
<td>Adresse standard d'un nœud LON. 32 385 combinaisons sont possibles au total.</td>
</tr>
<tr>
<td>Subnet ID (ID de sous-réseau)</td>
<td>Il s'agit du second niveau hiérarchique d'adresse d'un sous-réseau/nœud. Les numéros valides de sous-réseau vont de 1 à 255. L'ID de sous-réseau 0 est utilisé pour un nœud qui n'est pas encore installé.</td>
</tr>
<tr>
<td>System (système)</td>
<td>Un ou plusieurs sous-systèmes gérés de manière indépendante. Un système peut utiliser un ou plusieurs domaines.</td>
</tr>
<tr>
<td>Transceiver (transmetteur)</td>
<td>Installation qui relie physiquement la puce Neuron® au média de transmission.</td>
</tr>
<tr>
<td>Transceiver ID (ID de transmetteur)</td>
<td>Numéro à 5 bits qui permet de décoder le type de transmetteur à partir du matériel.</td>
</tr>
<tr>
<td>Transport Layer (couche transport)</td>
<td>Couche de transmission qui garantit la transmission point par point. Voir également sous OSI-Layer 1-7.</td>
</tr>
<tr>
<td>Turnaround network variable connection</td>
<td>Liaison de variables réseau dont les entrées et sorties se trouvent sur le même nœud.</td>
</tr>
<tr>
<td>Typeless network variable</td>
<td>Variable réseau dont ni le type ni la longueur de données ne sont connus. L'application hôte est responsable de la transmission de ce type de variables.</td>
</tr>
</tbody>
</table>
Définitions

<table>
<thead>
<tr>
<th>Unprocessed netvar</th>
<th>Adressage de la variable réseau au moyen d'une adresse explicite, à savoir grâce aux informations d'adressage déléguées au code de l'application hôte.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink (liaison montante)</td>
<td>Transmission de données d'une puce Neuron® dans un micro-ordinateur hôte, en règle générale via le port parallèle.</td>
</tr>
<tr>
<td>Variable Fetch (recherche de variable)</td>
<td>Requête auprès d'un nœud pour l'envoi du contenu d'une variable avec un indice correspondant.</td>
</tr>
</tbody>
</table>
9.2 Abréviations

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL</td>
<td>Liste d'instructions (en anglais, IL)</td>
</tr>
<tr>
<td>CRC</td>
<td>Contrôle de la transmission et correction des erreurs</td>
</tr>
<tr>
<td>CSMA</td>
<td>Protocole réseau capable de gérer les collisions : chaque participant peut transmettre lorsque le média est libre.</td>
</tr>
<tr>
<td>ECS</td>
<td>Enhanced Command Set (ensemble de commandes améliorées)</td>
</tr>
<tr>
<td>FTT</td>
<td>Free Topology Transceiver (transmetteur de topologie libre)</td>
</tr>
<tr>
<td>IL</td>
<td>Instruction list (en français, liste d'instructions)</td>
</tr>
<tr>
<td>IP</td>
<td>Protocole Internet</td>
</tr>
<tr>
<td>IP-852</td>
<td>Norme IP tunnelage pour bus de terrain (entre autres LONTalk®)</td>
</tr>
<tr>
<td>ISO</td>
<td>Organisation internationale de normalisation</td>
</tr>
<tr>
<td>kbps</td>
<td>Kilobit par seconde. 1 kbps = 1 000 bits/s = 1 kHz</td>
</tr>
<tr>
<td>LNS®</td>
<td>LON Network Services</td>
</tr>
<tr>
<td>LON</td>
<td>Local Operating Network</td>
</tr>
<tr>
<td>LPA</td>
<td>LON Protocol Analyzer</td>
</tr>
<tr>
<td>LTM-10</td>
<td>Module LONTalk®. Module matériel d'Echelon qui peut être utilisé en tant qu'interface de développement.</td>
</tr>
<tr>
<td>MIP</td>
<td>Microprocessor Interface Program (programme d'interface microprocesseur)</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card (carte d'interface réseau)</td>
</tr>
<tr>
<td>NSS-10</td>
<td>Matériel/firmware d'Echelon. Module approprié en tant qu'interface hôte avec gestion de réseau intégrée.</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnection (interconnexion de systèmes ouverts)</td>
</tr>
<tr>
<td>SCPT</td>
<td>Standard Configuration Parameter Type (type de paramètre de configuration standard)</td>
</tr>
<tr>
<td>SLTA</td>
<td>Serial LONTalk® Adapter (adaptateur LONTalk® série)</td>
</tr>
<tr>
<td>SNVT</td>
<td>Standard Network Variable Type (type de variable réseau standard)</td>
</tr>
<tr>
<td>TP</td>
<td>Twisted Pair (paire torsadée)</td>
</tr>
</tbody>
</table>
9.3 Bibliographie

<table>
<thead>
<tr>
<th>Titre de l'ouvrage</th>
<th>Édition</th>
<th>Type d'ouvrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTOCOLE LON{TALK}®</td>
<td>Avril 1993</td>
<td>Bulletin d'informations techniques LonWORKS®</td>
</tr>
<tr>
<td>Installation de réseaux LonWORKS® basé sur puces NEURON®</td>
<td>1991</td>
<td>Bulletin d'informations techniques ECHELON</td>
</tr>
<tr>
<td>Vue d'ensemble de l'installation</td>
<td>Janvier 1995</td>
<td>Bulletin d'informations techniques LonWORKS®</td>
</tr>
<tr>
<td>Contrôle avancé de l'accès au média avec le protocole LON{TALK}®</td>
<td>Janvier 1995</td>
<td>Bulletin d'informations techniques LonWORKS®</td>
</tr>
<tr>
<td>Transmetteur topologie libre FTT-10</td>
<td>1994 Version 1.2, document Echelon 078-0114-01B</td>
<td>Manuel utilisateur LonWORKS®</td>
</tr>
<tr>
<td>Guide de programmation de l'application hôte LonWORKS®</td>
<td>Révision n° 2 078-0016-01B</td>
<td></td>
</tr>
<tr>
<td>Brochure puce Neuron®</td>
<td>Janvier 1995</td>
<td>Brochure ECHELON</td>
</tr>
<tr>
<td>Communication distribuée puce Neuron® et processeurs de contrôle</td>
<td>1994 Rév. n° 3</td>
<td>Brochure MOTOROLA</td>
</tr>
<tr>
<td>Directives d'interopérabilité, couche application</td>
<td>1995 V. 2.0</td>
<td>LonMark®</td>
</tr>
<tr>
<td>Directives d'interopérabilité, couches 1 à 6</td>
<td>1994 V. 1.3</td>
<td>LonMark®</td>
</tr>
<tr>
<td>Local Operating Network</td>
<td>Brochure ELRAD 12/1994, 1/1995</td>
<td>Ludwig Brackmann</td>
</tr>
<tr>
<td>Communication ouverte avec LON et BACnet®</td>
<td>Info LNO 1996</td>
<td>Nils Meinert</td>
</tr>
<tr>
<td>Spécifications BACnet® 1995</td>
<td>ANSI/ASHRAE 135-1995</td>
<td>ISSN 1041-2336</td>
</tr>
<tr>
<td>Présentation des principes de la technologie LonWORKS®</td>
<td>Jan. 1997</td>
<td>Fritz Kurt, EBV Elektronik</td>
</tr>
<tr>
<td>La technologie LonWORKS®</td>
<td>1998</td>
<td>Tiersch F., LONTech® Thuringe e.V. ISBN 3-932875-03-6</td>
</tr>
</tbody>
</table>
A Annexe

A.1 Icônes

<table>
<thead>
<tr>
<th>Icône</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce symbole indique que des informations supplémentaires sur ce thème existent dans ce manuel ou dans un autre, ou encore dans des documents techniques. Il n’existe aucun renvoi direct à de tels documents.</td>
</tr>
<tr>
<td></td>
<td>Ce symbole avertit le lecteur que des composants peuvent être endommagés par une décharge électrostatique au contact. Recommandation : touchez au minimum le pôle moins du système (boîtier de la fiche PGU) avant d’entrer en contact avec des pièces électroniques. Il est encore mieux de porter au poignet un bracelet mis à la terre, relié au pôle moins du système.</td>
</tr>
<tr>
<td></td>
<td>Ce symbole désigne des instructions qui doivent être strictement suivies.</td>
</tr>
<tr>
<td></td>
<td>Les explications à côté de ce symbole ne s’appliquent qu’à la série Saia PCD® Classic.</td>
</tr>
<tr>
<td></td>
<td>Les explications à côté de ce symbole ne s’appliquent qu’à la série Saia PCD® xx7.</td>
</tr>
</tbody>
</table>
A.2 Références et sites Internet

Manuel d'installation LONWORKS®, éditions VDE, ISBN 3800725754

Manuel de planification LONWORKS®, éditions VDE, ISBN 3800725991

LONWORKS® - technique d'automatisation du bâtiment
Huss- Medien GmbH
Verlag Technik
ISBN 3341013466

Site Internet de LONMARK® : https://www.lonmark.org

Master List des NVT LONMARK® disponible sur www.echelon.com
A.3 Adresses

Saia-Burgess Controls AG
Bahnhofstrasse 18
3280 Murten / Suisse

Téléphone : +41 26 580 30 00
Télécopie : +41 26 580 34 99

E-mail : support@saia-pcd.com
Page d’accueil : www.saia-pcd.com
Assistance : www.sbc-support.com
Entreprises de distribution international &
Représentants SBC : www.saia-pcd.com/contact

Adresse postale pour les retours de produits par les clients de “Vente Suisse” :

Saia-Burgess Controls AG
Service Après-Vente
Rue de la Gare 18
3280 Morat / Suisse