PCD1.M2220-C15
E-Line CPU
0 Indice dei contenuti
0.1 Cronologia dei documenti ... 0-4
0.2 Marchi di fabbrica .. 0-4

1 Panoramica grafica
1.1 Vai a … ... 1-1

2 Guida di orientamento
2.1 Documenti .. 2-1
2.2 Introduzione .. 2-2
2.2.1 Collegamento dei controllori Saia PCD® a Internet 2-2
2.2.2 Progettazione di un’applicazione .. 2-3
2.2.3 Cablaggio .. 2-4
2.2.4 Indirizzamento degli ingressi e delle uscite (I/O)...................... 2-5
2.3 Montaggio ... 2-7
2.3.1 Dimensioni .. 2-7
2.3.2 Posizione di montaggio e temperatura ambiente 2-7
2.3.3 Montaggio su guide DIN .. 2-8
2.3.4 Smontaggio dalle guide DIN .. 2-8
2.3.5 Copertura per slot per moduli innestabili I/O PCD2 slot 0 e 1 2-9
2.3.6 Modifica della copertura per slot ... 2-10
2.4 Manipolazione dei moduli I/O PCD2 .. 2-14
2.4.1 Inserimento del modulo ... 2-14
2.4.2 Rimozione del modulo ... 2-14
2.5 Tensione di alimentazione e messa a terra 2-15
2.5.1 Simboli della massa .. 2-15
2.5.2 Alimentazione a 24 VCC ... 2-16
2.5.3 Alimentazione a 24 VCA ... 2-17

3 CPU/Unità processore
3.1 Proprietà delle CPU PCD1.M2220-C15 ... 3-1
3.2 Dettagli tecnici generali ... 3-2
3.3 Versione hardware ... 3-3
3.4 Firmware (aggiornamento COSinus) ... 3-4
3.5 Struttura della memoria ... 3-5
3.5.1 Gestione della memoria dei PCD con sistema operativo COSinus 3-5
3.5.2 Struttura della memoria Flash sul PCD1.M2220-C15 3-6
3.5.3 Scheda SD su slot I/O (PCD2.R6000) 3-6
3.5.4 Moduli della memoria Flash PCD7.Rxxx per il file system 3-7
3.6 Risorse del sistema ... 3-8
3.6.1 Programma utente in struttura a blocchi 3-8
3.6.2 Tipi di dati/campi dei valori .. 3-9
3.6.3 Elementi di risorse ... 3-9
3.6.4 Conservazione dei dati .. 3-10
3.7 LED degli stati di funzionamento ... 3-11
3.8 Tasto Run/Stop .. 3-12
3.9 Watchdog (relè) ... 3-13
3.9.1 .. come funzione watchdog .. 3-13
3.9.2 .. come uscita relè ... 3-15
3.10 Watchdog (software) .. 3-17
3.11 Download del programma e backup .. 3-18

4 RIO (Remote I/O)
 4.1 Espansioni decentralizzate .. 4-1

5 Interfacce di comunicazione
 5.1 Utilizzo del protocollo S-Bus di SBC 5-1
 5.2 On-board .. 5-2
 5.2.1 Interfaccia di programmazione PGU (porta USB) 5-2
 5.2.2 Ethernet (Eth0.0/Eth0.1) porta n. 9 .. 5-3
 5.2.3 RS-485 (porta n. 0+1) con separazione galvanica (morsettiera X1) 5-4
 5.3 Interfaccia per moduli innestabili PCD2 PCD2.F2xx 5-6
 5.3.1 Note generali sul modulo innestabile PCD2.F2xxx 5-6
 5.3.2 Indirizzi porte per PCD2.F2xx su slot 0 e/o slot 1 5-7
 5.4 Comunicazione modem .. 5-8

6 Ingressi e uscite
 6.1 On-board ... 6-1
 6.1.1 Panoramica dei collegamenti .. 6-2
 6.1.2 Ingressi digitali (morsettiera X10, X14, X18) 6-3
 6.1.3 Ingressi analogici (morsettiera X10) 6-5
 6.1.4 Uscita digitale ... 6-9
 6.2 Moduli innestabili I/O slot 0 e slot 1 6-11

7 Cavi di sistema e adattatori
 7.1 Cavi di sistema con collegamenti del modulo I/O al PCD 7-1

8 Configurazione
 8.1 Prerequisito ... 8-1
 8.2 Informazioni generali .. 8-2
 8.3 Device Configurator .. 8-3
 8.3.1 Esecuzione ... 8-3
 8.3.2 Guida .. 8-3
 8.3.3 Visualizzazione di Media Mapping 8-4
 8.4 Ingressi digitali “on board” ... 8-5
 8.5 Ingressi analogici “on board” .. 8-6
 8.6 Funzione speciale ... 8-8
 8.6.1 Relè watchdog per il monitoraggio dell’esecuzione del programma o come uscita relè .. 8-8

9 Manutenzione
 9.1 Nessuna richiesta di manutenzione ... 9-1

A Allegato
 A.1 Simboli .. A-1
 A.1.1 Avvertenze ... A-1
 A.1.2 Denominazioni accessorie .. A-1
 A.2 Definizione delle interfacce seriali ... A-2
 A.2.1 RS-485 ... A-2
Indice dei contenuti

A.3 Disposizioni d'installazione e contatti relè ... A-3
A.3.1 Disposizioni d'installazione per la commutazione di bassissima tensione A-3
A.3.2 Disposizioni d'installazione per la commutazione di bassa tensione A-3
A.3.3 Commutazione di carichi induttivi .. A-5
A.3.4 Indicazioni del costruttore di relè in merito alle dimensioni dell'elemento RC. ... A-5
A.4 Abbreviazioni ... A-7
A.5 Glossario .. A-8
A.6 Contatti ... A-10
0.1 Cronologia dei documenti

<table>
<thead>
<tr>
<th>Versione</th>
<th>Modificato</th>
<th>Pubblicato</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITA01</td>
<td>2016-04-18</td>
<td>2016-04-22</td>
<td>- Nuovo documento</td>
</tr>
<tr>
<td></td>
<td>2016-05-10</td>
<td>2016-05-13</td>
<td>- Piedinatura per la funzione watchdog capitoli 6.1.4</td>
</tr>
</tbody>
</table>

0.2 Marchi di fabbrica

Saia PCD® è un marchio di fabbrica registrato di Saia-Burgess Controls AG.

Le modifiche tecniche sono apportate secondo i più recenti progressi tecnologici.

Saia-Burgess Controls AG, 2016. © Tutti i diritti riservati.

Pubblicato in Svizzera.
1 Panoramica grafica

1.1 Vai a ...

Questa panoramica grafica mostra alcuni dei punti più importanti delle istruzioni per l’uso del modello PCD1.M2220-C15.

Facendo clic sulle descrizioni dei collegamenti, è possibile passare direttamente alla sezione corrispondente all’interno del documento. I numeri separati da punti corrispondono ai numeri dei capitoli.
2 Guida di orientamento

2.1 Documenti

Informazioni esaustive, manuali e opuscoli scaricabili sono disponibili sui seguenti siti Internet.

Supporto: www.sbc-support.com
Pagina iniziale PCD: www.saia-pcd.com

Si consigliano i seguenti documenti a integrazione del presente:

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Numero documento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogo di sistema</td>
<td>26-215</td>
</tr>
<tr>
<td>Tool di programmazione Saia PG5®</td>
<td>26-732</td>
</tr>
<tr>
<td>Programmazione in lista istruzioni (IL)</td>
<td>26-733</td>
</tr>
<tr>
<td>Moduli I/O</td>
<td>27-600</td>
</tr>
<tr>
<td>Cavi di sistema e adattatori</td>
<td>26-792</td>
</tr>
<tr>
<td>Ethernet TCP/IP</td>
<td>26-776</td>
</tr>
<tr>
<td>Rete RS-485</td>
<td>26-740</td>
</tr>
</tbody>
</table>
2.2 Introduzione

All'interno del presente manuale sono descritti i dettagli tecnici dei componenti del PCD1.M2220-C15. Il significato dei simboli e delle abbreviazioni utilizzati in questo manuale e le informazioni tecniche generali sono disponibili nell'Allegato.

Questa sezione si propone l'obiettivo di aiutare a riconoscere e applicare i principi per la progettazione e l'installazione di sistemi di controllo con componenti del PCD1.M2220-C15.

I dettagli relativi a hardware, software, configurazione, manutenzione e ricerca guasti sono trattati nelle rispettive sezioni.

2.2.1 Collegamento dei controllori Saia PCD® a Internet

Quando i controllori Saia PCD sono connessi direttamente alla rete internet, questi sono anche un potenziale obiettivo di attacchi informatici. Per la sicurezza operativa, si devono sempre prendere le appropriate misure protettive!

I controllori PCD includono delle semplici funzioni di protezione integrate. Tuttavia, la sicurezza operativa su internet è assicurata solo se utilizzano router esterni con un firewall e connessioni VPN crittografate.

Per maggiori informazioni, si prega di fare riferimento al nostro sito di supporto: www.sbc-support.com/security
2.2.2 Progettazione di un’applicazione

Per la progettazione di applicazioni con PCD1.M2220-C15, è necessario prendere in considerazione il seguente aspetto:

La corrente interna, assorbita dai moduli I/O dall’alimentazione +5 V e V+, non deve superare la corrente di alimentazione nominale della CPU.

Per la progettazione di un’applicazione, consigliamo di procedere come indicato di seguito:

1. Scegliere tutti i moduli I/O tenendo conto delle esigenze.
2. Verificare la corrente di alimentazione max. per la CPU!

Stimare l’assorbimento dell’alimentazione a 24 V. Impiegare i valori stimati. I valori stimati possono essere estrapolati dalla sezione relativa al fabbisogno elettrico dei moduli I/O PCD1 oppure determinati con il device Configurator di PG5.

Nella maggior parte delle applicazioni è necessario prestare attenzione al fatto che le uscite costituiscono il carico più elevato dell’alimentazione a 24 V. Per 16 uscite con uscita del carico di 0,5 A ciascuna, il carico equivale comunque a 8 A qualora siano attivate tutte le uscite.
2.2.3 **Cablaggio**

- I cavi di alimentazione a 230 VCA e le linee dati devono essere separati e posati a una distanza minima di 10 cm. Si consiglia di lasciare dello spazio tra i cavi di alimentazione e le linee dati anche all'interno dell'armadio elettrico.

- Le linee dati/bus digitali e le linee dati/sensore analogiche devono essere posate separate.

- Si consiglia di utilizzare cavi schermati per le linee dati analogiche.

- La schermatura deve essere collegata a terra in corrispondenza dell'ingresso e dell'uscita sull'armadio elettrico. Le schermature devono essere quanto più corta possibile e presentare una sezione quanto più grande possibile. Il punto di terra centrale deve essere >10 mm² e collegato al cavo di terra con un istrada- mento minimo.

- Generalmente, la schermatura è collegata all’armadio elettrico soltanto su un lato, a meno che non sia presente un collegamento equipotenziale con resistenza essenzialmente ridotta rispetto alla resistenza della schermatura.

- I carichi induttivi, che sono installati nello stesso armadio elettrico, ad es. le bobine di contatto, devono essere dotati di soppressori idonei (elementi RC).

- I componenti dell’armadio elettrico con elevata intensità di campo, ad es. trasformatori o convertitori di frequenza, devono essere schermati con piastre divisorie con buon collegamento a terra.

Protezione contro sovratensione per distanze elevate o cavi esterni

- Per la posa di cavi fuori da edifici o su lunghe distanze, è necessario intraprendere provvedimenti idonei di protezione contro la sovratensione. In particolar modo, un ruolo decisivo in questi provvedimenti è ricoperto dalle linee bus.

- Nel caso dei cavi posati all’aperto, la schermatura deve disporre di una capacità di conduzione elettrica idonea ed essere collegata a terra su entrambe le estremità.

- I cavi di sovratensione devono essere installati in corrispondenza dell’ingresso dell’armadio elettrico.
2.2.4 Indirizzamento degli ingressi e delle uscite (I/O)

Posizione visiva dell'uscita per la seguente descrizione

Il PCD è montato come mostrato di seguito in modo che la scritta sia leggibile da sinistra a destra.

Indirizzamento

Nei controllori Saia PCD® PCD1.M2220-C15, l'indirizzamento degli slot I/O inizia da sinistra e prosegue verso destra. Gli I/O integrati (on-board) sulla piastra del processore PLC sono assegnati alle morsettiere X10, X14, X18 e si trovano sul lato inferiore del PCD.

Richiamo degli ingressi e delle uscite sugli slot 0 e 1 per PG5

L’accesso diretto agli elementi I/O di ciascun modulo innestabile I/O PCD2 si verifica nel programma per mezzo del codice intermedio e dell'indirizzo, separati da uno spazio.

Esempio: Ingresso 5 (Input 5) “I 5” o uscita 16 (Output 16) “O 16”. Qui le lettere “I” e “O” costituiscono il codice intermedio (tipo di elemento) e il numero corrisponde all'indirizzo assoluto.

Ulteriori dettagli sulla programmazione sono disponibili, tra l’altro, nell’help del tool di programmazione PG5 oppure nei rispettivi manuali.

Tutti gli ingressi e le uscite che si trovano sulla piastra della CPU (on-board) vengono assegnati dal programmatore con il configuratore di dispositivi (Device Configurator nel tool PG5) a flag e registri (Media Mapping).
Indirizzo relè watchdog = “O 255”

L’indirizzo di uscita O 255 è riservato per il relè watchdog. Il contatto in commutazione del relè si trova sul connettore X18.

In alternativa, il relè watchdog può essere utilizzato come un normale relè.

Ulteriori dettagli sono disponibili nel capitolo 3.9 e 3.10 Watchdog.

Moduli d’ingresso e uscita innestabili

Gli slot dei moduli I/O vengono designati sul dispositivo con Slot0 e Slot1. Il termine “slot” (inglese) indica uno spazio e sarà impiegato d’ora in avanti nel presente manuale.
2.3 Montaggio

2.3.1 Dimensioni

Dimensioni in mm LxAxP = 175 x 110 x 62

2.3.2 Posizione di montaggio e temperatura ambiente

Per il montaggio del modulo viene generalmente utilizzata una superficie verticale. Per questa posizione di montaggio è consentita una temperatura ambiente compresa tra 0°C e 55°C.

Prediligere il montaggio in verticale. In tutte le altre posizioni, il flusso di aria non è agevolato e non è consentito superare una temperatura ambiente di 40°C.
2.3.3 Montaggio su guide DIN

Il PCD1 può essere inserito su una guida DIN montata in posizione orizzontale (35 mm a norma DIN EN 60715 TH35).

![Montaggio su guide DIN](image)

1. Agganciare il PCD sul bordo superiore della guida DIN servendosi di entrambi i ganci.

2. Esercitare pressione con decisione sulla parte inferiore del PCD contro il bordo inferiore della guida DIN. Accertarsi che i cursori di bloccaggio si blocchino.

3. Qualora questo non fosse il caso, per via della spigolosità dei bordi della guida DIN, è possibile utilizzare un cacciavite a intaglio idoneo per svitare, spingere e/o rilasciare brevemente i cursori di bloccaggio uno dopo l’altro.

4. Verificare che il PCD sia agganciato e bloccato correttamente.

5. Equipaggiare e cablare il PCD.
Per la rimozione delle coperture degli slot per moduli I/O, consultare il capitolo 2.3.5.

2.3.4 Smontaggio dalle guide DIN

1. Contrassegnare il cablaggio di collegamento e rimuoverlo dal PCD.

2. Se possibile, estrarre i moduli innestabili I/O e o i rispettivi terminali.

3. Con un cacciavite a intaglio, svitare e/o spingere entrambi i cursori di bloccaggio, uno dopo l’altro, fino a percepire lo scatto (vedere 2.2.3 > Figura 3).

4. Sollevare la parte inferiore del PCD dal bordo inferiore della guida DIN (tirare verso di sé per circa 5 mm) e sollevare il bordo superiore della guida DIN.

5. Rimuovere il PCD.

6. Con i pollici, premere nuovamente entrambi i cursori di bloccaggio sulla posizione di uscita fino a percepire di nuovo lo scatto.
2.3.5 **Copertura per slot per moduli innestabili I/O PCD2 slot 0 e 1**

La copertura (contrassegnata in rosso) in corrispondenza dello slot 0 e dello slot 1 per i moduli I/O PCD2 è innestata nell'alloggiamento del PCD.

![Vista del PCD1.M2220-C15 dall’alto](image)

Esempi dall’ampia gamma di moduli I/O PCD2 con diverse tecniche di collegamento.

<table>
<thead>
<tr>
<th>Modulo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.E110</td>
<td>8 ingressi da 24 VCC</td>
</tr>
<tr>
<td>PCD2.A460</td>
<td>16 uscite 5 36 VCC/0,5 A</td>
</tr>
</tbody>
</table>

Informazioni come versioni del modulo, dettagli, descrizione di funzionamento, piedinatura ecc. sono disponibili nel manuale sul sito www.sbc-support.com alla voce Documents (Documenti) -> Manuals (Manuali) -> “27-600_ITA_Manuale moduli I/O.pdf”
2.3.6 **Modifica della copertura per slot**

A seconda della tecnica di collegamento dei moduli innestabili PCD2, come ad esempio il cavo a nastro ecc., è necessario adeguare la copertura per slot servendosi dei punti di rottura nominale predefiniti. A tal fine, è necessario rimuovere la copertura per slot per eseguire la modifica.

Se non si procede rispettando le istruzioni indicate di seguito, è possibile che le staffe laterali della copertura si pieghino o rompano irrimediabilmente.

Utensili necessari:
- Tronchese
- Lima o lama

Rimozione della copertura per slot

Fase 1:

Due naselli sporgenti, uno a sinistra e uno a destra della copertura per slot, agevolano la presa durante la spinta verso l’alto.

Le fasi di lavoro indicate nelle tre pagine a seguire sono applicabili a entrambi gli slot.
Apertura della copertura inferiore per slot

Obiettivo:

I moduli innestabili I/O PCD2 presentano, a seconda del funzionamento, tecniche di collegamento dall'alto o dal basso. Pertanto, le coperture degli slot possono essere adeguate singolarmente. Per il modulo PCD2.E110, mostrato in basso, procedere come indicato di seguito per l’apertura dei collegamenti standard:

Procedimento:

Fase 2:

Con il tronchese, separare dalla parte principale della copertura per slot entrambe le staffe di collegamento, a sinistra e a destra, che appartengono agli slot.

Fase 3:

Piegare più volte, verso l’alto e verso il basso, la parte inferiore dello slot liberata a lato, fino a staccarla.

Fase 4:

Qualora debba essere rimossa anche la parte superiore della copertura per slot, passare direttamente alla fase 5, oppure limare il bordo di rottura formatosi impiegando la lima o la lama. Attenzione: pericolo di lesione!
Apertura della copertura superiore per slot

Obiettivo:

Per tecniche di collegamento dall’alto, è possibile adattare anche le parti superiori della copertura. In questo caso, è necessario procedere con l’apertura come per un modulo PCD2.F2810:

Procedimento:

Fase 5:

Con il tronchese, separare dalla parte principale della copertura per slot entrambe le staffe di collegamento, a sinistra e a destra, che appartengono agli slot.

Fase 6:

Piegare verso l’alto e verso il basso la parte inferiore dello slot liberata a lato, fino a staccarla.

Fase 7:

Limare il bordo di rottura formatosi con la lima o la lama.

Attenzione: pericolo di lesione!
Inserimento della copertura per slot

Fase 8:

Spingere la copertura per slot dall’alto fino ad assicurarne l’innesto.

Si consiglia di NON lasciare lenta la copertura per gli slot.

Motivazioni:

- Le denominazioni Slot 0 e Slot 1 e M1-Flash per l’espansione memoria verrebbero eliminate.
- Componenti grezzi o estranei potrebbero cadere all’interno del dispositivo e provocare cortocircuiti.
2.4 Manipolazione dei moduli I/O PCD2

Interrompere la tensione di alimentazione prima d’innestare e/o sganciare un modulo sul PCD1.M2220-C15! Questa regola è applicabile anche se vengono eseguite modifiche sul modulo (ad es. con il collegamento o lo scollegamento di ponticelli).

2.4.1 Inserimento del modulo

Sulla base dell’alloggiamento sono visibili elementi in metallo a scopo di schermatura. Questi sono allineati con precisione sugli slot del modulo.

Su ciascuno di questi slot (slot I/O 0+ I/O 1) può essere inserito un modulo I/O a piacimento.

1. A tal fine, spingere in avanti il modulo con la spina (di colore blu nella maggior parte dei casi) in direzione del connettore del bus di sistema, prestando cautela e senza esercitare troppa forza, fino a battuta. Le guide sono di aiuto.

2. Non appena l’estremità contrapposta del modulo si trova a filo con il gancio di arresto della base dell’alloggiamento, premere il modulo verso il basso in direzione della base dell’alloggiamento fino a udire lo scatto. In questo modo, è possibile garantire che il modulo innestabile I/O non cada per colpa di vibrazioni.

2.4.2 Rimozione del modulo

Con i pollici, premere il gancio di arresto per max. 1 mm dal modulo (quindi dal connettore di collegamento I/O e/o il terminale) verso l’esterno. Con l’altra mano, sollevare il modulo in corrispondenza del connettore di collegamento I/O appena sopra il gancio di arresto e tirare il modulo estraendolo dallo slot.

Prestare attenzione affinché i ganci di metallo delle lamierine di schermatura non si pieghino verso l’interno con un utensile (quindi non sollevare in nessun caso con il cacciavite). Si forma un cortocircuito e il modulo e/o il controllore subiscono danni.
2.5 Tensione di alimentazione e messa a terra

Nella parte superiore dell’alloggiamento del PCD1.M2220-C15 si trova una lamiera di schermatura.

Se un modulo I/O viene inserito in uno slot, i ganci in metallo della lamiera di schermatura nell’alloggiamento PCD1 formano un punto di contatto molteplice con il modulo.

Il potenziale zero (polo negativo) dell’alimentazione a 24 V viene collegato al polo negativo del terminale di alimentazione X3. Quest’ultimo deve essere collegato alla barra di terra con un cavo il più corto possibile (<25 cm) con una sezione di 1,5 mm².

L’eventuale schermatura dei segnali analogici o dei cavi di comunicazione si dovrà ottenere tramite un terminale negativo o tramite la barra di terra sullo stesso potenziale di terra. Tutti i collegamenti negativi sono allacciati internamente. Per un utilizzo senza problemi, questi collegamenti devono essere rafforzati all’esterno con cavi corti con una sezione di 1,5 mm².

2.5.1 Simboli della massa

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Denominazione</th>
<th>Funzionalità</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>DGND</td>
<td>digital ground (massa digitale)</td>
</tr>
<tr>
<td>A</td>
<td>AGND</td>
<td>analog ground (massa analogica)</td>
</tr>
<tr>
<td>S</td>
<td>SGND</td>
<td>signal ground (massa segnale)</td>
</tr>
<tr>
<td>↓</td>
<td>Earth</td>
<td>messa a terra</td>
</tr>
</tbody>
</table>
2.5.2 Alimentazione a 24 VCC
2.5.3 Alimentazione a 24 VCA

Gli elementi CA e CC sono separati galvanicamente.
3 CPU/Unità processore

3.1 Proprietà delle CPU PCD1.M2220-C15

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>PCD1.M2220-C15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caratteristiche generali</td>
<td></td>
</tr>
<tr>
<td>Numero di slot per moduli innestabili I/O PCD2</td>
<td>2</td>
</tr>
<tr>
<td>Max. numero di ingressi/uscite</td>
<td>fino a 39 (^1)</td>
</tr>
<tr>
<td>Processore</td>
<td>MCF5373L/240 MHz</td>
</tr>
<tr>
<td>Firmware, aggiornamento firmware (memoria Flash per firmware)</td>
<td>Scaricabile dall’ambiente Saia PG5®</td>
</tr>
<tr>
<td>Programmabile con Saia PG5®</td>
<td>a partire da V2.1.430</td>
</tr>
<tr>
<td>Programma utente/DB/TEXT (FLASH)</td>
<td>512 kByte</td>
</tr>
<tr>
<td>Memoria di lavoro/DB/TEXT (RAM)</td>
<td>128 kByte</td>
</tr>
<tr>
<td>File system utente (INTFLASH)</td>
<td>128 MByte</td>
</tr>
<tr>
<td>Memoria Flash (SRIO, configurazione e backup)</td>
<td>128 MByte</td>
</tr>
<tr>
<td>Backup dati con tecnologia FRAM (i dati sono conservati anche senza tensione)</td>
<td>Registri, flag, data block e testi</td>
</tr>
<tr>
<td>Orologio hardware (^2)</td>
<td>✔</td>
</tr>
<tr>
<td>Precisione Orologio hardware</td>
<td>Sì, errore meno di 1 min/mese</td>
</tr>
<tr>
<td>Interfaccia</td>
<td></td>
</tr>
<tr>
<td>Interfaccia programmabile</td>
<td>Micro USB tipo B (^3)</td>
</tr>
<tr>
<td>Porta 0 + 1</td>
<td>RS-485, fino a 115 kBit/s</td>
</tr>
<tr>
<td>Interfaccia Ether-S-Net</td>
<td>Switch con 2 porte</td>
</tr>
<tr>
<td>Collegamenti bus di campo</td>
<td></td>
</tr>
<tr>
<td>S-Net seriale</td>
<td>✔</td>
</tr>
</tbody>
</table>

\(^1\) Con due moduli I/O digitali PCD2.E16x e/o PCD2.A46x con rispettivamente 16 I/O

\(^2\) Con stato disinserito, la riserva dell’orologio hardware tiene min. 10 giorni (tip. 20 giorni)

\(^3\) La porta USB “USB 1.1 Slave Device 12 Mbps” è impiegata per la programmazione
3.2 Dettagli tecnici generali

Alimentazione di corrente (esterna e interna)

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensione di alimentazione</td>
<td>24 VCC/24 VCA</td>
</tr>
<tr>
<td>Consumo di energia</td>
<td>120 mA</td>
</tr>
<tr>
<td>Panoramica carico bus interno 5 V/V+</td>
<td>500 mA/200 mA</td>
</tr>
</tbody>
</table>

Condizioni ambientali

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente</td>
<td>In caso di montaggio verticale: 0…+55 °C</td>
</tr>
<tr>
<td></td>
<td>Per tutte le altre posizioni di montaggio si applica un campo di temperatura più ristretto di: 0…+40 °C</td>
</tr>
<tr>
<td>Temperatura di stoccaggio</td>
<td>-25…+85 °C</td>
</tr>
<tr>
<td>Umidità relativa</td>
<td>10…95% senza condensa</td>
</tr>
</tbody>
</table>

Resistenza alle vibrazioni

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrazioni</td>
<td>secondo la norma EN/IEC61131-2:</td>
</tr>
<tr>
<td></td>
<td>- 5…13,2 Hz ampiezza costante (1,42 mm)</td>
</tr>
<tr>
<td></td>
<td>- 13,2…150 Hz, accelerazione costante (1 g)</td>
</tr>
</tbody>
</table>

Sicurezza elettrica

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe di protezione</td>
<td>IP20 conforme a EN60529</td>
</tr>
<tr>
<td>Percorsi fuoriuscita aria</td>
<td>Conforme a EN61131-2 ed EN50178: tra circuiti e alloggiamenti e tra i circuiti con isolamento elettrico: categoria di sovratensione II, grado di disturbo 2</td>
</tr>
<tr>
<td>Tensione di prova</td>
<td>500 V CC per una tensione nominale di 24 V CC/24 V CA</td>
</tr>
</tbody>
</table>

Compatibilità elettromagnetica

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunità ai disturbi</td>
<td>secondo la norma EN61000-6-2</td>
</tr>
<tr>
<td>Scariche elettrostatiche</td>
<td>secondo la norma EN61000-4-2:</td>
</tr>
<tr>
<td></td>
<td>- 4 kV scarica da contatto,</td>
</tr>
<tr>
<td></td>
<td>- 8 kV scarica in aria</td>
</tr>
<tr>
<td>Campi elettromagnetici irradiati a radiofrequenza</td>
<td>secondo la norma EN61000-4-3: intensità di campo</td>
</tr>
<tr>
<td></td>
<td>- 2,0…2,7 GHz 1 V/m</td>
</tr>
<tr>
<td></td>
<td>- 1,4…2,0 GHz 3 V/m</td>
</tr>
<tr>
<td></td>
<td>- 80…1000 MHz 10 V/m</td>
</tr>
<tr>
<td>Disturbi transitori elettrici veloci</td>
<td>secondo la norma EN61000-4-4:</td>
</tr>
<tr>
<td></td>
<td>- 2 kV o linee di alimentazione in corrente continua/alternata,</td>
</tr>
<tr>
<td></td>
<td>- 1 kV per le linee dei segnali di I/O e di comunicazione dati</td>
</tr>
<tr>
<td></td>
<td>- (2 kV per I/O in CA, non schermati)</td>
</tr>
<tr>
<td>Impulsi ad alta tensione</td>
<td>secondo la norma EN61000-4-5:</td>
</tr>
<tr>
<td></td>
<td>- 0,5 kV CM/DM per linee di alimentazione in corrente continua,</td>
</tr>
<tr>
<td></td>
<td>- 2 kV CM e 1 kV DM per linee di alimentazione in corrente alternata,</td>
</tr>
<tr>
<td></td>
<td>- 1 kV CM per le linee dei segnali di I/O e di comunicazione dati</td>
</tr>
<tr>
<td></td>
<td>- (2 kV CM e 1 kV DM per I/O in CA, non schermati)</td>
</tr>
<tr>
<td>Disturbi condotti, indotti da cam- pi ad alta frequenza</td>
<td>secondo la norma EN61000-4-6: 10 V 150 kHz-80 MHz</td>
</tr>
<tr>
<td>Emissione disturbi</td>
<td>secondo la norma EN61000-6-4: per campi industriali</td>
</tr>
</tbody>
</table>
3.3 Versione hardware

Dopo la sua distribuzione ufficiale, il prodotto negli anni successivi subisce miglioramenti e modifiche. Per rilevare tale cambiamento, esiste il cosiddetto numero di versione hardware. In base a questo numero, è possibile verificare se una funzione è presente a livello hardware. Ciò può essere desunto con il configuratore online Saia PG5® sotto Hardware Info oppure tramite l'etichetta posta sul lato destro del PCD1.
3.4 Firmware (aggiornamento COSinus)

Il firmware del PCD1 è memorizzato in una scheda Flash. Per aggiornare il firmware, è possibile eseguire il download sul PCD1, in qualsiasi momento, con l’ausilio in Saia PG5®.

In questo caso, procedere come segue:

Aprire www.sbc-support.com e scaricare la versione firmware più recente

- Creare una connessione fra Saia PG5® e la CPU, come per il download di un’applicazione (a seconda dei dispositivi disponibili, usare una connessione seriale con cavo PGU, modem, USB, Ethernet)

- Aprire l’“Online Configurator” e passare a offline

- Nel menu Tools (Strumenti), selezionare “Update Firmware” (Aggiorna firmware) e selezionare il percorso per il file della nuova versione firmware con la funzione di ricerca. Assicurarsi di aver selezionato solo un file per il download

- Avviare il download
3.5 Struttura della memoria

Codice programma utente inclusi ROM DB/Text	512 kByte salvati nel file system
Memoria di lavoro con tecnologia FRAM	FRAM da 128 kByte per l’accesso in lettura e scrittura a DB e testi
Media PCD con tecnologia FRAM	Registri: 16’384, Flag: 16’384, Timer/contatori: 1600
File system utente on-board	128 MByte per file web, logging di dati, documenti o backup
File system PLC	128 MByte di compartizione file system PLC_SYS per i dati di sistema e directory di backup utente. L’utente non può accedere a questa partizione (vedere cap. 3.8 Tasto Run/Stop)

3.5.1 Gestione della memoria dei PCD con sistema operativo COSinus

Se la tensione di alimentazione viene applicata al controllore, un programma caricato in precedenza viene copiato dalla memoria Flash µSD nella SDRAM propria della CPU ed eseguito.

Se nella memoria Flash µSD non si trova alcun programma utente, il programma viene caricato dalla memoria M1 Flash (purché disponibile).

In caso di utilizzo di un’espansione innestabile della memoria Flash (M1 Flash), il programma utente non viene copiato nella memoria Flash µSD.

Struttura della memoria e risorse dei sistemi Saia PCD
(vedere capitolo 3.1 “Proprietà delle CPU PCD1.M2220-C15”)

Memoria SDRAM

Memoria FRAM

Memoria Flash µSD

Espansione memoria Flash PCD7.Rxxx

Struttura della memoria di un PCD1.M2220-C15 con schede di memoria aggiuntive
3.5.2 Struttura della memoria Flash sul PCD1.M2220-C15

.. File system per l’utente
INTFLASH Utilizzato principalmente per BacNet
PLC Utilizzato per progetti web collegati (Web Builder)
WEB

3.5.3 Scheda SD su slot I/O (PCD2.R6000)

Il modulo di memoria PCD2.R6000 non viene supportato sul PCD1.M2220-C15, dal momento che la scheda SD non può essere fissata meccanicamente.
3.5.4 Moduli della memoria Flash PCD7.Rxxx per il file system

La scheda Flash per l’espansione della memoria, per le funzionalità Lon-IP o BACnet®, viene inserita nello slot M1 Flash.

Riepilogo dei moduli di memoria per CPU PCD1

Con un modulo Saia PCD7.Rxxx nello slot M1, è possibile ampliare la memoria integrata del PCD1.M2220-C15. Inoltre, può essere espansa con BACnet® IP o Lon-IP.

<table>
<thead>
<tr>
<th>Espansione della memoria e comunicazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD7.R550M04</td>
</tr>
<tr>
<td>PCD7.R560</td>
</tr>
<tr>
<td>PCD7.R562</td>
</tr>
<tr>
<td>PCD7.R580</td>
</tr>
<tr>
<td>PCD7.R582</td>
</tr>
<tr>
<td>PCD7.R610</td>
</tr>
<tr>
<td>PCD7.R-MSD1024</td>
</tr>
</tbody>
</table>
3.6 Risorse del sistema

3.6.1 Programma utente in struttura a blocchi

I componenti del programma utente vengono caricati dal programmatore nei blocchi assegnati in base alla rispettiva funzione.

<table>
<thead>
<tr>
<th>Modello</th>
<th>Numero</th>
<th>Indirizzi</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocchi organizzativi ciclici (COB)</td>
<td>32</td>
<td>0…31</td>
<td>Elementi del programma principale</td>
</tr>
<tr>
<td>Eccezione/blocchi organizzativi dipendenti dal sistema (XOB)</td>
<td>64</td>
<td>0…63</td>
<td>richiamati dal sistema</td>
</tr>
<tr>
<td>Blocchi del programma (PB)</td>
<td>1000</td>
<td>0…999</td>
<td>Sottoprogrammi</td>
</tr>
<tr>
<td>Blocchi funzione (FB)</td>
<td>2000</td>
<td>0…1999</td>
<td>Sottoprogrammi con parametro</td>
</tr>
<tr>
<td>Blocchi sequenziali (SB) totale 6000 passi e transizioni</td>
<td>96</td>
<td>0…95</td>
<td>per processi sequenziali per la programmazione Graftec</td>
</tr>
</tbody>
</table>

Struttura a blocchi

- Principali blocchi di sistema e di programma
- Blocchi di programma e blocchi funzione
- Blocchi di programma sequenziali
3.6.2 Tipi di dati/campi dei valori

<table>
<thead>
<tr>
<th>Modello</th>
<th>Numeri interi</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.147,483,648 fino a</td>
<td>Formato: decimale, binario, BCD o esadecimale</td>
</tr>
<tr>
<td></td>
<td>+2.147,483,647</td>
<td></td>
</tr>
<tr>
<td>Numeri in virgola mobile</td>
<td>-9,223'37 * 10^18 fino</td>
<td>Sono disponibili le istruzioni per la conversione dei valori in formato</td>
</tr>
<tr>
<td></td>
<td>a -5,421'01 * 10^20</td>
<td>Saia PCD® (Motorola Fast Floating Point, FFP) nel formato IEEE 754 e</td>
</tr>
<tr>
<td></td>
<td>+9,223'37 * 10^18 fino</td>
<td>viceversa.</td>
</tr>
<tr>
<td></td>
<td>a +5,421'01 * 10^20</td>
<td></td>
</tr>
<tr>
<td>IEEE a singola precision</td>
<td>±1,401 x 10^-45 fino a</td>
<td></td>
</tr>
<tr>
<td>IEEE a doppia precision</td>
<td>3,403 x 10^38 fino a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,798 x 10^38 fino a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5,421'01 x 10^-20 a 80</td>
<td></td>
</tr>
</tbody>
</table>

3.6.3 Elementi di risorse

<table>
<thead>
<tr>
<th>Modello</th>
<th>Numero</th>
<th>Indirizzi</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag (1 Bit)</td>
<td>16’384</td>
<td>F 0…16’383</td>
<td>I flag servono da preimpostazione non volatili, può essere comun-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>que configurata un’area volatile a partire dall’indirizzo 0</td>
</tr>
<tr>
<td>Registri (32 Bit)</td>
<td>16’384</td>
<td>R 0…16’383</td>
<td>Per i valori interi o con virgola mobile</td>
</tr>
<tr>
<td>Blocchi dati/Testo</td>
<td>8191</td>
<td>X o DB 0…8190</td>
<td>Per il testo e DB</td>
</tr>
<tr>
<td>Timer/Contatori (31 Bit)</td>
<td>16001</td>
<td>T/C 0…1599</td>
<td>La ripartizione dei timer e dei contatori può essere configurata. I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>timer vengono azzerati periodica-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mente dal sistema operativo; l’u-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nità temporale di base può essere impostata tra 10 ms e 10 secondi</td>
</tr>
<tr>
<td>Costanti con codice media K</td>
<td>a scelta</td>
<td>0…16’383</td>
<td>Questi valori possono essere utilizzati nelle istruzioni al posto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dei registri</td>
</tr>
<tr>
<td>Costanti senza codice media K</td>
<td>a scelta</td>
<td>-2.147,483,648 fino a</td>
<td>Possono essere caricate solo in un registro con un comando LD e non</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.147,483,647 fino a</td>
<td>possono essere utilizzate nelle istruzioni al posto dei registri.</td>
</tr>
</tbody>
</table>

1) Il numero dei timer configurati non dovrebbe essere maggiore di quello necessario al fine di evitare un carico eccessivo della CPU.
3.6.4 Conservazione dei dati

La tecnologia FRAM impiegata evita la perdita di dati in caso d'interruzione dell'alimentazione. Su questo tipo di controllore è disponibile anche un supercondensatore esclusivamente per la conservazione del RTC (orologio hardware). Il supercondensatore alimenta l'orologio per almeno 10 giorni, in genere 20 giorni.

Le seguenti risorse vengono memorizzate in FRAM:

- Register
- Flag
- Timer
- Contatori
- Catene di caratteri (TEXT)
- Data block (DB)

Le CPU E-Line, quindi, non richiedono manutenzione né alcuna batteria.
3.7 LED degli stati di funzionamento

I tre LED colorati mostrano nella tabella che segue i possibili stati di funzionamento della CPU.

<table>
<thead>
<tr>
<th>LED degli stati di funzionamento</th>
<th>Significato</th>
<th>Run</th>
<th>Stop</th>
<th>Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struttura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colore</td>
<td></td>
<td>verde</td>
<td>rosso</td>
<td>giallo</td>
</tr>
<tr>
<td>Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esecuzione condizionata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esecuzione con errore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esecuzione condizionata con errore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arresto con errore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica di sistema</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legenda:
- LED spento
- LED acceso
- LED lampeggia

Avvio	Autodiagnosi per circa 1 s dopo l’accensione o il riavvio
Run | Normale elaborazione del programma utente dopo l’avvio
Esecuzione condizionata | Stato di esecuzione condizionale. Nel debugger è stata posta una condizione (Run Until... [Esecuzione fino a...]) che non è stata ancora soddisfatta
Esecuzione con errore | Come “Run”, ma con messaggio di errore
Esecuzione condizionata con errore | Come “Esecuzione condizionata”, ma con messaggio di errore
Stop | Lo stato di Stop si verifica nei seguenti casi:
- Unità di programmazione in modalità PGU collegata durante l’accensione della CPU
- PGU arrestata dall’unità di programmazione
- Condizione per “Esecuzione condizionata” soddisfatta
Arresto con errore | Come “Stop”, ma con un messaggio di errore
Halt | Lo stato Stop si verifica nei casi seguenti:
- È stata elaborata un’istruzione di arresto
- Grave errore nel programma utente
- Errore hardware
- Non è caricato alcun programma
- Nessuna modalità di comunicazione su una PGU S-Bus o su una porta Gateway Master
Diagnostica di sistema | Lo stato di “Ripristino” presenta le seguenti cause:
- Tensione di alimentazione troppo bassa
- Firmware non avviato
3.8 Tasto Run/Stop

La modalità di funzionamento può essere modificata durante il funzionamento o all’accensione:

<table>
<thead>
<tr>
<th>Sequenza LED</th>
<th>Azione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verde, lampeggiante (1 Hz)</td>
<td>Commuta nello stato "Boot" e rimane in attesa del download FW.</td>
</tr>
<tr>
<td>Rosso, lampeggiante veloce (4 Hz)</td>
<td>Media/risorse (Flash, registri, flag ecc.) vengono cancellati. L’orologio viene impostato su 00:00:00 01/01/1990. Il programma utente viene conservato (contenuto della scheda µSD). La CPU commuta in “Run”.</td>
</tr>
<tr>
<td>Rosso, lampeggiante lentamente (2 Hz)</td>
<td>Il programma utente non si avvia, la CPU commuta su “Stop”</td>
</tr>
</tbody>
</table>
| Rosso/verde, lampeggiante (2 Hz) | I dati memorizzati vengono cancellati:
- Programma utente
- Impostazioni hardware
- Media/risorse (Flash, registri, flag ecc.)
- Sulla scheda µSD interna oppure sulla scheda nello slot “M1 Flash” (selezionando PG5 -> Device Configurator -> Luogo di Backup).

In caso di utilizzo di un’espansione innestabile della memoria Flash (M1 Flash), il programma utente non viene copiato sulla scheda µSD (vedere capitolo “3.5.4 Struttura della memoria di sistema”). |

Durante il funzionamento del PCD1:
Se il tasto viene premuto più a lungo di ½ secondo e meno di 3 secondi in modalità Run, il controllore passa alla modalità Stop e viceversa.

Se il tasto viene premuto per più di 3 secondi, l’ultimo programma utente salvato viene caricato dall’espansione di memoria Flash (M1 Flash).
3.9 **Watchdog (relè)**

3.9.1 **.. come funzione watchdog**

Con la commutazione watchdog è possibile monitorare con elevata affidabilità l’elaborazione corretta del programma utente e, in caso di errore, eseguire provvedimenti di sicurezza efficaci. Le CPU PCD1.M2220-C15 sono dotate, di serie, di questa funzione watchdog hardware, in breve “watchdog”.

Il watchdog attivo, quindi il contatto in posizione di lavoro (NO-CO), viene mostrato con il LED verde lampeggiante di watchdog.

I collegamenti del contatto di commutazione watchdog si trovano sul connettore X18 (NO, CO e NC) e sono assegnati all’indirizzo O 255.

Per l’occupazione dei collegamenti, vedere “6.1.4 Uscita digitale” > “Occupazione dei collegamenti per funzione relè watchdog”

Descrizione del funzionamento

L’elettronica di watchdog monitora la commutazione di O 255. Il tempo inizia a scorrere con la prima modifica dello stato di O 255 (fronte positivo o negativo) e il relè watchdog commuta in posizione di lavoro (NO-CO). Se entro il tempo impostato (standard 250 ms) non viene intrapresa alcuna modifica di stato sull’O 255, il watchdog commuta in posizione di riposo (CO-NC).

Se il tempo d’impulso viene superato, ciò può significare quanto segue:
- La CPU è stata arrestata (non più in modalità Esecuzione)
- L’esecuzione del programma è troppo lunga (programma troppo grande oppure loop di programma AWL)

Per il controllo sopraindicato dell’O 255 in PG5 sono disponibili degli FBox atti a tale scopo.
Esempio FBox FUPLA:

Nella guida online PG5 della FBox “HW Watchdog” sono disponibili ulteriori dettagli su queste FBox.

Esempio di una sequenza AWL:

Nel tipo di programmazione in Lista Istruzioni (AWL) la sequenza watchdog si presenta come segue.

<table>
<thead>
<tr>
<th>Label</th>
<th>Comando</th>
<th>Operand</th>
<th>Commento</th>
</tr>
</thead>
<tbody>
<tr>
<td>COB</td>
<td>0</td>
<td>0</td>
<td>; or 1 ... 31</td>
</tr>
<tr>
<td>STL</td>
<td>WD_Flag</td>
<td></td>
<td>; Helpflag invers</td>
</tr>
<tr>
<td>OUT</td>
<td>WD_Flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>0 255</td>
<td></td>
<td>; Output 255 blinking</td>
</tr>
<tr>
<td>ECOB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo codice il relè watchdog viene disaccitato anche in caso di loop (continui) causati dal programmatore. Per quanto riguarda il tempo di ciclo del programma utente, tenere presente quanto segue:

Con in Lista Istruzioni, la sequenza di codice deve essere ripetuta più volte nel programma utente per evitare che il watchdog si disacciti in modalità Run!
3.9.2 .. come uscita relè

In alternativa alla funzione watchdog, il relè watchdog può essere impiegato anche come normale uscita relè (liberamente commutabile).

Il relè commutato, quindi il contatto in posizione di lavoro (NO-CO), viene mostrato con il LED verde lampeggiante di watchdog.

I collegamenti del contatto di commutazione relè watchdog si trovano sul connettore X18 (NO, CO e NC).

Per l’assegnazione dei collegamenti, vedere “6.1.4 Uscita digitale” > “Assegnazione dei collegamenti per uscita relè”

La selezione della funzione del relè deve essere eseguita nel PG5 “Device Configurator”.

Ingressi/uscite on-board

Visualizzazione proprietà
Watchdog (relè)

Utilizzo come relè watchdog per il monitoraggio oppure tramite Media Mapping come uscita (impostazione di fabbrica “watchdog”)

Richiamo della finestra Media Mapping

Tabella Mapping per lo stato dell’uscita relè

Tramite Media Mapping o accesso diretto (direct access) è possibile inserire e/o disinserire il relè come ogni altra uscita digitale.

Esempio FUPLA:
3.10 **Watchdog (software)**

Il watchdog hardware offre la massima sicurezza. Per applicazioni non critiche, un watchdog software può essere sufficiente, laddove il processore si monitora autonomamente e la CPU viene riavviata in caso di funzionamento anomalo o loop.

L’elemento centrale del watchdog software è il comando in Lista Istruzioni SYSWR K 1000 che trova applicazione anche nella FBox “watchdog software”.

Funzionamento

La prima volta che il comando viene eseguito, viene attivata la funzione di watchdog. Successivamente, questa istruzione deve essere eseguita almeno ogni 200 ms, altrimenti il watchdog entra in azione e riavvia il PCD.

Esempio FBox FUPLA:

![Watchdog FBox](image)

Istruzione con codice AWL:

<table>
<thead>
<tr>
<th>Label</th>
<th>Comando</th>
<th>Operando</th>
<th>Commento</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSWR</td>
<td>K 1000</td>
<td>R/K x</td>
<td>; Software watchdog instruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; Parameter according to the following table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; K = Constants or R = Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; Blank space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; x = 0 The software watchdog is deactivated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; x = 1 The software watchdog is activated. If the instruction is not repeated within 200 ms, a cold start is performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; x = 2 The software watchdog is activated. If the instruction is not repeated within 200 ms, XOB 0 is called, then a cold start is performed</td>
</tr>
</tbody>
</table>

I richiami “XOB 0” vengono registrati nella cronologia del PCD:

“XOB 0 WDOG START” se XOB 0 è stato invocato dal watchdog software
“XOB 0 START EXEC” se XOB 0 è stato invocato a causa di un errore di alimentazione
3.11 Download del programma e backup

Il download del programma utente nella CPU E-Line con Saia PG5 nonché il backup e il ripristino del programma utente sono descritti nella guida del PG5.
4 RIO (Remote I/O)

4.1 Espansioni decentralizzate

Per le espansioni decentralizzate con ingressi e uscite tramite Ethernet si consigliano i moduli PCD3.RIO (Remote I/O) (vedere anche il manuale 26-789).

Una descrizione dettagliata è disponibile nella sezione 4 del manuale per PCD3 26-789.

E-Line CPU PCD1.M22xx-C15 con RIO decentralizzati

Possibilità di espansione del PCD1.M2220-C15:
- tramite Ethernet con i RIO PCD3.T66x e PCD3.T76x
- tramite RS-485 con i moduli E-Line
5 Interfacce di comunicazione

Il termine “interfaccia di comunicazione” sarà sostituito, all’interno del presente manuale, dal termine semplificativo “porta”.

5.1 Utilizzo del protocollo S-Bus di SBC

Con S-Bus di SBC s’intende il protocollo di comunicazione proprietario di Saia PCD®. Nel manuale “26-739_IT_Manuale_SBC-SBus.pdf” sono disponibili ulteriori informazioni.

L’S-Bus di SBC è progettato fondamentalmente per la comunicazione con i tool di engineering e di debugging, per il collegamento di livelli di gestione o sistemi di controllo di processo. Non è indicato o approvato per il collegamento con dispositivi di campo di produttori diversi. Qui è disponibile un bus di campo aperto indipendente dal produttore.
5.2 On-board

Con il termine “on-board” s'intende, nel nostro caso, la piastra della CPU. Ad esempio, con le interfacce on-board, s'intende che queste sono già presenti sulla piastra della CPU oppure che sono predisposte per essa.

5.2.1 Interfaccia di programmazione PGU (porta USB)

La porta USB viene utilizzata esclusivamente come interfaccia PGU. Per impie-gare l'interfaccia USB, è necessario installare sul PC il pacchetto del programma PG5 versione 2.1 o successiva.

Qualora il PCD sia collegato a un PC tramite la porta USB per la prima volta, il sistema operativo del PC (Windows) installa automaticamente il drive USB PCD corrispondente. Il collegamento con il PCD via USB si realizza tramite la seguen-te impostazione nella cartella di progetto PG5 sul rispettivo dispositivo alla voce “Online-Settings”:

Attivando “PGU-Option”, si accerta che il PC possa venire collegato direttamente al PCD, indipendentemente dall'indirizzo S-Bus configurato.
5.2.2 Ethernet (Eth0.0/Eth0.1) porta n. 9

Per il collegamento Ethernet si utilizza uno switch a 10/100 Mbits che si adatta automaticamente a entrambe le velocità. Le due prese con indirizzo Ethernet uguale possono essere impiegate in maniera indipendente per motivi tecnici associati alla velocità.

Funzionalità

<table>
<thead>
<tr>
<th>Tipo di spina</th>
<th>LED arancione</th>
<th>Link (collegamento) e attività</th>
<th>LED verde</th>
<th>Velocità</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ45, alloggiamento in metallo, 2 LED ciascuno</td>
<td>Link (collegamento) e attività</td>
<td>LED arancione</td>
<td>LED verde</td>
<td>Velocità</td>
</tr>
</tbody>
</table>

Porta

9

Cablaggio

È supportato un cavo Ethernet standard (ad es. Cat 5e) non incrociato e incrociato.
5.2.3 **RS-485 (porta n. 0+1) con separazione galvanica (morsettiera X1)**

È possibile impiegare fino a due collegamenti RS-485 senza hardware aggiuntivo.

La modalità di comunicazione S-Bus e Modbus si realizza tramite Port0 e/o Port1 sulla morsettiera X1.

![Diagram of RS-485 connections](image-url)

Termination

La morsettiera X1 permette di configurare la terminazione dei cavi RS-485 con interruttori a serramanico.

Collegamenti RS-485 e interruttori per resistenze terminali (terminazione) per Port0 e Port1

![Diagram of RS-485 connections and termination settings](image-url)

LED Port0 e Port1

La morsettiera X1 dispone di LED per indicare lo stato di Port0 e Port1.
Interruttori “Termination 0” e “Termination 1”
(inserimento o disinserimento delle resistenze terminali RS-485)

Con entrambi gli interruttori sopramenzionati, a destra della morsettiera X1 vengono inserite e/o disinserite le resistenze terminali su entrambe le stazioni esterne dei due fili S-Bus separati l’uno dall’altro.

- Su entrambe le stazioni esterne del fascio RS-485 è necessario commutare l’interruttore su “C” (closed).
- Per tutte le altre stazioni, l’interruttore deve essere in posizione “O” (open).

Rappresentazione del principio di un Bus RS-485 con resistenze terminali.

Maggiori dettagli sono disponibili in “26-740_IT_Manuale_Componenti di rete RS485”.
5.3 **Interfacce per moduli innestabili PCD2 PCD2.F2xx**

Attenzione:
L'E-Line CPU non ha uno “Slot A” per un modulo di interfaccia PCD7.F1xxS!

Il PCD1.M2220-C15 può essere ampliato con massimo due moduli PCD2.F2xxx, ciascuno con due interfacce (scheda con interfaccia fissa a scelta e uno slot per moduli di interfaccia PCD7.F1xxS) innestabili sugli slot 0 e 1.

Max. 6 interfacce seriali
(2 on-board e 2 PCD2.F2xxx [con 2 per interfacce])

![Interfaccia PCD2 F2xx](image)

PCD1.M2220-C15 con 2 PCD2.F2xx ed eventualmente un PCD7.F1xxS ciascuno

5.3.1 **Note generali sul modulo innestabile PCD2.F2xxx**

Proprietà di sistema dei moduli PCD2.F2xxx:

Osservare i seguenti punti quando si utilizzano i moduli di interfaccia PCD2.F2xxx:

- Su ciascun sistema PCD1 è possibile utilizzare un modulo PCD2.F2xxx (a 2 interfacce) per ogni slot I/O. Complessivamente, quindi, 4 interfacce.

- Il sistema PCD1.M2220-C15 dispone di un potente processore che gestisce l’applicazione e le interfacce seriali. La gestione dei moduli di interfaccia richiede un’adeguata capacità della CPU. Per determinare la potenza massima di comunicazione di ciascun PCD1.M2220-C15, è necessario osservare quanto segue:

Il volume di comunicazione viene determinato in base ai dispositivi periferici collegati. Questo è il caso, ad esempio, dell’impiego di un PCD1.M2220-C15 come stazione slave S-Bus. Se il PCD1.M2220-C15 è bombardato con un traffico elevato di telegrammi a elevate velocità di trasmissione, la potenza disponibile della CPU per la gestione dell’applicazione effettiva sarà ridotta. Valgono le seguenti regole:
Interfacce di comunicazione

- L’impiego di 6 interfacce con 9,6 kbps richiede circa il 50% della potenza della CPU.
- 2 interfacce con 57,6 kbps richiedono circa il 50% della potenza della CPU.
- 2 interfacce con 115 kbps richiedono circa il 60% della potenza della CPU.

● A meno che il PCD1.M2220-C15 non sia impiegato come stazione master, il volume di comunicazione, quindi la potenza di comunicazione, dipende dal programma applicativo nel PCD1.M2220-C15. In teoria, è possibile utilizzare tutte le interfacce con una velocità di trasmissione massima di 115 kbps. Il flusso dati effettivo diminuisce tenendo conto della grandezza del programma applicativo e del numero di interfacce attive. Il fattore essenziale risiede nel fatto che i dispositivi periferici collegati possono funzionare con la configurazione selezionata e la potenza di comunicazione.

5.3.2 Indirizzi porte per PCD2.F2xx su slot 0 e/o slot 1

Gli slot sono raggiungibili con i seguenti indirizzi porte per FBox di comunicazione:

Slot 0 con modulo PCD2.F2xxx
- Porta 100 per la porta 0.0
- Porta 101 per la porta 0.1
 (con PCD7.F1xxx)

Slot 1 con modulo PCD2.F2xxx
- Porta 110 per la porta 1.0
- Porta 111 per la porta 1.1
 (con PCD7.F1xxx)

Vedere il manuale “27-649_ITA_Manuale_PCD2F2xxx”.
5.4 Comunicazione modem

Modem PCD2.T8xx

PCD2.T814:
Modem analogico 33,6 kbit/s
(interfaccia RS-232 e TTL)

PCD2.T851:
Modem digitale ISDN-TA
(interfaccia RS-232 e TTL)

6 Ingressi e uscite

Il presente capitolo descrive gli ingressi e le uscite del PCD1.M2220-C15, indicando il funzionamento e la piedinatura.

Sono descritte tre possibilità in cui si possono trovare gli ingressi e le uscite. Si tratta di:

- On-board
- come moduli innestabili
- su RIO (remoti)

6.1 On-board

On-board significa “montato sulla piastra della CPU”.

Per la panoramica, consultare il capitolo successivo 6.1.1
6.1.1 Panoramica dei collegamenti

X1
- **DB-/DA+**: RS-485 (Porta 0/DA+)
- **S**: Massa segnale (Porta 1/DA+)

Slot 0
- ...
- Con moduli innestabili della famiglia PCD2 liberamente equipaggiabili.

Slot 1
- ...
- ...

X3
- **±**: Terra
- **+**: +24 V CA/CC
- **-**: 0 V CA/CC

X10
- **AI0**: Ingresso analogico 0
- **LA**: Massa analogica
- **AI1**: Ingresso analogico 1
- **LA**: Massa analogica
- **R**: Logica positiva/negativa (Active Level Resistor)
- **D**: Massa digitale

X14
- **DI0**: Ingresso digitale 0 24 V CA/CC
- **D**: Massa digitale
- **DI1**: Ingresso digitale 1 24 V CA/CC
- **D**: Massa digitale
- **DI2**: Ingresso digitale 2 24 V CA/CC
- **D**: Massa digitale

X18
- **DI3**: Ingresso digitale 3 24 V CA/CC
- **D**: Massa digitale
- **NO**: Watchdog o uscita relè normalmente aperto (open)
- **CO**: Contatto centrale
- **NC**: normalemente chiuso (closed)
6.1.2 Ingressi digitali (morsettiera X10, X14, X18)

Collegamenti per ingressi digitali da DI0 a DI3. Morsettiera X10, X14 e X18

PCD1.M2220-C15

LED per gli ingressi digitali da DI0 a DI3

Dati tecnici

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Dettagli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di ingressi</td>
<td>4, logica positiva/negativa, collegati elettricamente</td>
</tr>
<tr>
<td>Separazione galvanica</td>
<td>Tra alimentazione e altri I/O</td>
</tr>
<tr>
<td>Tensione d'ingresso</td>
<td>Tipicamente 24 VCA / VCC (15…30 VCC, 15…28 VCA)</td>
</tr>
<tr>
<td>Corrente d'ingresso</td>
<td>Tipicamente 4 mA con 24 VCA / VCC</td>
</tr>
<tr>
<td>Ritardo d’ingresso</td>
<td>0 ms (CA), 8 ms (CC) (selezionabili nel Device Configurator)</td>
</tr>
<tr>
<td>Livello di commutazione</td>
<td>Basso: 0…5 V, alto: 15…30 VCC</td>
</tr>
<tr>
<td></td>
<td>Basso: 0…5 V, alto: 15…28 VCA</td>
</tr>
<tr>
<td>Protezioni contro le sovratensioni</td>
<td>No</td>
</tr>
<tr>
<td>LED</td>
<td>DI0…3</td>
</tr>
<tr>
<td>Design dei terminali</td>
<td>Morsetti estraibili a molla innestabili fino a 1,5 mm²</td>
</tr>
</tbody>
</table>

Definizione dei segnali in ingresso

<table>
<thead>
<tr>
<th></th>
<th>per 24 Vcc</th>
<th>per 24 VCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Vcc</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24 Vcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Vcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Vcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Vcc</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-30 Vcc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commutazione ingressi e denominazione dei terminali

Ingressi digitali logica positiva

Configurazione in corrente continua "logica positiva" (commutazione terminale positivo)

Ingressi digitali logica negativa

Configurazione in corrente continua "logica negativa" (commutazione massa)

Tensione alternata

Configurazione in tensione alternata

Con la tensione alternata, per rilevare costantemente lo stato “1”, la frequenza deve corrispondere ad almeno 48 Hz!
6.1.3 **Ingressi analogici (morsettiera X10)**

![Collegamenti analogici AI0 e AI1 morsettiera X10]

LED per i collegamenti analogici AI0 e AI1, attivi con >5% del valore minimo

Dati tecnici

<table>
<thead>
<tr>
<th>Numero</th>
<th>2 (AI0, AI1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separazione galvanica</td>
<td>no</td>
</tr>
<tr>
<td>Tecnica di collegamento per sensori</td>
<td>A 2 fili (ingresso passivo)</td>
</tr>
<tr>
<td>Principio di misurazione</td>
<td>Unipolare</td>
</tr>
<tr>
<td>LED</td>
<td>AI0, AI1 attivo con >5% del valore minimo</td>
</tr>
<tr>
<td>Design dei terminali</td>
<td>Morsetti estraibili a molla inestabili fino a 1,5 mm²</td>
</tr>
<tr>
<td>Campo del segnale e valori di misura (configurabili tramite Saia PG5 Device Configurator)</td>
<td></td>
</tr>
<tr>
<td>Misura della tensione</td>
<td>-10 V ... +10 V</td>
</tr>
<tr>
<td>Resistenza</td>
<td>0 Ω ... 2.500 Ω</td>
</tr>
<tr>
<td>Resistenze</td>
<td>0 Ω ... 7.500 Ω</td>
</tr>
<tr>
<td>NTC10k</td>
<td>0 Ω ... 300 kΩ</td>
</tr>
<tr>
<td>NTC20k</td>
<td>0 Ω ... 300 kΩ</td>
</tr>
<tr>
<td>Pt1.000</td>
<td>-50 °C ... +400 °C</td>
</tr>
<tr>
<td>Ni1.000</td>
<td>-50 °C ... +210 °C</td>
</tr>
<tr>
<td>Ni1.000 L&S</td>
<td>-30 °C ... +140 °C</td>
</tr>
<tr>
<td>Tensione d'ingresso massima</td>
<td>+/- 20 V (indipendentemente dalla configurazione dell'ingresso)</td>
</tr>
<tr>
<td>Tensioni >15 V / < -15 V possono causare valori errati su altri ingressi</td>
<td></td>
</tr>
<tr>
<td>Ritardo d'ingresso</td>
<td>Aggiornamento dei canali</td>
</tr>
<tr>
<td>Costante di tempo filtro d'ingresso hardware</td>
<td>Misura della tensione</td>
</tr>
<tr>
<td>Resistenze</td>
<td>τ = 2,2 ms</td>
</tr>
<tr>
<td>Filtro d'ingresso software</td>
<td>Commutabile tramite Saia PG5 Device Configurator (determina il valore medio dagli ultimi 16 valori)</td>
</tr>
</tbody>
</table>
Configurazione dei canali d'ingresso analogici:

La scelta del campo dell'ingresso analogico viene realizzata tramite il "Device Configurator".

Modalità Risoluzione [Bit] Risoluzione [valore misurato] Precisione (a Tambiente = 25°C) Visualizzazione

<table>
<thead>
<tr>
<th>Tensione –10 V …+10 V</th>
<th>12 + segni iniziali</th>
<th>2,44 mV (Sineare) $R_n = 220$ kΩ</th>
<th>0,3% del valore misurato +/-10 mV</th>
<th>–10.000…+10.000 (standard) oppure fondo scala dell'utente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistenza 0…2.500 Ω</td>
<td>12</td>
<td>0,50 … 0,80 Ω Corrente misurata: 1,0 … 1,3 mA</td>
<td>0,3% del valore misurato +/- 3 Ω</td>
<td>0 … 25.000</td>
</tr>
<tr>
<td>0…7.500 Ω</td>
<td>12</td>
<td>0 … 3.000 Ω: 1 … 2 Ω 3000 … 7.500 Ω: 2 … 4 Ω Corrente misurata: 0,6 … 1,3 mA</td>
<td>0,3% del valore misurato +/- 15 Ω</td>
<td>0 … 7.500</td>
</tr>
<tr>
<td>0…300 kΩ</td>
<td>12</td>
<td>0 … 15 kΩ: 1 … 10 Ω 15 … 40 kΩ: 10 … 40 Ω 40 … 70 kΩ: 80 … 200 Ω 70 … 100 kΩ: 200 … 400 Ω 100 … 300 kΩ: 0,4 … 3,5 kΩ Corrente misurata: 30 µA … 1,3 mA</td>
<td>1,0% del valore misurato +/- 80 Ω</td>
<td>0 … 30.000</td>
</tr>
<tr>
<td>NTC10k(1)</td>
<td>12</td>
<td>–40 … +120 °C: 0,25 … 0,15 °C –10 … +80 °C: 0,05 … 0,06 °C +5 … +60 °C: <0,04 °C</td>
<td><–20°C: +/- 2,0°C –20…+120°C: +/- 2,0°C –10…+80°C: +/- 1,0°C +5…+60°C: +/- 0,5°C</td>
<td>–400…1.200</td>
</tr>
<tr>
<td>NTC20k(1)</td>
<td>12</td>
<td>–20 … +150 °C: 0,15 … 0,30 °C –5 … +120 °C: 0,07 … 0,13 °C +5 … +95 °C: 0,05 … 0,06 °C +15 … +75 °C: <0,04 °C</td>
<td><–10°C: +/- 4,0°C –20…+150°C: +/- 4,0°C –5…+120°C: +/- 2,0°C +5…+95°C: +/- 1,0°C +15…+75°C: +/- 0,5°C</td>
<td>–200…1.500</td>
</tr>
<tr>
<td>Pt 1.000</td>
<td>12</td>
<td>–50 … +400 °C: 0,15 … 0,25 °C Corrente misurata: 1,0 … 1,3 mA</td>
<td>0,3% del valore misurato +/- 0,5°C</td>
<td>–500…4.000</td>
</tr>
<tr>
<td>Ni 1.000</td>
<td>12</td>
<td>–50 … +210 °C: 0,09 … 0,11 °C Corrente misurata: 1,0 … 1,3 mA</td>
<td>0,3% del valore misurato +/- 0,5°C</td>
<td>–500…2.100</td>
</tr>
<tr>
<td>Ni 1.000 L&S</td>
<td>12</td>
<td>–30 … +140 °C: 0,12 … 0,15 °C Corrente misurata: 1,0 … 1,3 mA</td>
<td>0,3% del valore misurato +/- 0,5°C</td>
<td>–300…1.400</td>
</tr>
</tbody>
</table>

[1] Queste curve di temperatura non sono standard. Si differenziano in base al produttore del NTC. Con un file di curva caratteristica (saiadbe, disponibile presso il supporto Saia-PCD) e la FBox "Conversion DB n Points" è possibile rappresentare le temperature.

La fornitura è preconfigurata su -10…+10 V (12 Bit + segno iniziale).
Definizione del campo, limiti massimo e minimo e flag di stato:

Ingressi temperatura:

<table>
<thead>
<tr>
<th>Modello</th>
<th>min./max. Flag di stato</th>
<th>Valori campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 1.000 (-50…400°C)</td>
<td>-500 / 4.000</td>
<td>Limiti -500…4.000</td>
</tr>
<tr>
<td>Ni 1.000 (-50…210°C)</td>
<td>-500 / 2.100</td>
<td>Limiti -500…2100</td>
</tr>
<tr>
<td>Ni 1.000 L&S (-30…140°C)</td>
<td>-300 / 1.400</td>
<td>Limiti -300…1400</td>
</tr>
<tr>
<td>-10 … + 10 V</td>
<td>-12 / + 12</td>
<td>Limiti -10.100…10.100</td>
</tr>
<tr>
<td>0 … 2.500 Ω</td>
<td>0 / 25.500</td>
<td>Limiti 0…25.500</td>
</tr>
<tr>
<td>0 … 7.500 Ω</td>
<td>0 / 7.650</td>
<td>Limiti 0…7.650</td>
</tr>
<tr>
<td>0 … 300 kΩ</td>
<td>0 / 30.600</td>
<td>Limiti 0…30.600</td>
</tr>
</tbody>
</table>

Ogniqualvolta si raggiungono i valori min./max. si attiva il flag di stato min./max.

Il flag di stato resta attivo fino a quando non viene letto lo stato.
Con Media Mapping è possibile leggere il flag di stato al termine di ciascun COB. Ciò significa che il flag di stato viene ripristinato al termine di ciascun COB.

Il flag di stato viene ripristinato all’accesso diretto non appena il programma applicativo lo legge.

Schema elettrico:

![Schema elettrico](image-url)
6.1.4 **Uscita digitale**

Come uscita applicativa digitale è disponibile il relè di watchdog, a meno che quest’ultimo non sia utilizzato per il monitoraggio dell’esecuzione del programma utente.

Dati tecnici

<table>
<thead>
<tr>
<th>Numero di uscite</th>
<th>1× contatto di commutazione relè</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funzionalità</td>
<td>Funzione watchdog o uscita applicativa (selezionabile)</td>
</tr>
<tr>
<td>max. Tensione</td>
<td>48 VCA o VCC</td>
</tr>
<tr>
<td>Capacità di interruzione</td>
<td>1 A (con tensione di alimentazione CC si deve collegare al carico un diodo anti-ritorno)</td>
</tr>
</tbody>
</table>
Piedinatura per la funzione watchdog

Watchdog-Relay
Power "pericoloso" uscite

Per la configurazione e la descrizione, vedere “3.9.1 .. come funzione watchdog”

Piedinatura per l'uscita relè

Per la configurazione e la descrizione, vedere “3.9.2 .. come uscita relè”
6.2 Moduli innestabili I/O slot 0 e slot 1

Come moduli innestabili I/O vengono utilizzati quelli della famiglia PCD2.

Le descrizioni dei moduli I/O sono disponibili nel documento “27-600 ITAxx Manuale moduli di I/O”

I moduli I/O e le morsettine I/O possono essere estratti o inseriti esclusivamente con Saia PCD® privi di tensione (spenti).
Deve essere disinserita anche la tensione di alimentazione esterna dei moduli +24 V.
7 Cavi di sistema e adattatori

7.1 Cavi di sistema con collegamenti del modulo I/O al PCD

Per evitare errori di cablaggio e risparmiare tempo, sono disponibili diversi cavi precablati. Il connettore del modulo è già montato sull’estremità del cavo. In questo modo, sarà necessario soltanto inserire questo lato. Sull’altra estremità del cavo si trovano, a seconda della versione, dei connettori per cavi piatti orientati verso gli adattatori dei terminali o l’interfaccia del relè, oppure singoli fili da 0,5 mm² o 0,25 mm², numerati e con codice colore.

I cavi con tecniche di collegamento diverse sono descritti nel manuale “Cavi di sistema e adattatori”, documento 26-792.
8 Configurazione
(Configuratore di dispositivi PG5 e/o Device Configurator)

Finestra “Device Configurator” (visualizzazione standard)

8.1 Prerequisito

La seguente descrizione parte dal presupposto che l’utente abbia familiarità con il software PG5.

Informazioni sul software PG5, sulla programmazione, sui tool ecc. sono disponibili nel manuale “26-732_IT_Maneule utente_PG5”.

I manuali non sono mai aggiornati come le pagine dell’help nel rispettivo tool del pacchetto PG5.
8.2 Informazioni generali

Il presente capitolo descrive l’impiego del Device Configurator Saia PG5®.

Il Device Configurator definisce:

- una Media Mapping ciclica per consentire un collegamento tra i valori dei moduli I/O periferici e le risorse del dispositivo (ad es. flag e registri PCD).

- l’accesso diretto a istruzioni di programmazione per rilevare e/o trasmettere valori dal modulo periferico.

La gestione di I/O è attivata per PCD1.M2220-C15 sempre tramite accesso diretto; non è previsto alcun bit di errore di accesso. Il campo di accesso minimo è “byte”, pertanto si consiglia di utilizzare il Media Mapping per la lettura e/o la scrittura di tutti i canali I/O.

Per ulteriori dettagli, consultare l’help del Device Configurator.
8.3 Device Configurator

8.3.1 Esecuzione

Per predisporre le configurazioni hardware, i protocolli e la gestione degli I/O è necessario utilizzare il Device Configurator.

Questo può essere avviato facendo doppio clic su “Device-Configurator” nell’albero della directory.

8.3.2 Guida

La guida per il Device Configurator è disponibile alla voce di menu “Help” → “Help Topics”:

Fare clic su uno degli “Argomenti guida”:
8.3.3 Visualizzazione di Media Mapping

Con Media Mapping s’intende l’assegnazione i protocolli e la gestione degli I/O è necessario utilizzare il Device Configurator.

Esempio di una visualizzazione di Media Mapping

Per prendere in considerazione il rispettivo Media Mapping della risorsa attuale, aprire la finestra corrispondente in tre diversi modi:

- oppure
- Pulsante,
- e premendo la combinazione di tasti di scelta rapida “Alt + F5”
8.4 Ingressi digitali “on board”

Nel PG5 Device Configurator per PCD1.M2220-C15 alla voce ..

Visualizzazione proprietà

Media Mapping sì/no

Stabilire gli ingressi VCC o VCA.
Filtro per CC: no = 0 ms oppure sì = 8 ms

Tabella Mapping per gli ingressi digitali
8.5 Ingressi analogici “on board”

Proprietà

Predisposizione Media
Mapping per valori, stato o diagnosi

Predisposizione dei canali
e informazioni sulla scala

Filtro: Valore intermedio tra gli ultimi 16 valori.
Tabella Media Mapping per gli ingressi analogici

![Media Mapping Table]

Tabella Media Mapping per lo stato degli ingressi analogici

![Media Mapping Table]
8.6 Funzione speciale

8.6.1 Relè watchdog per il monitoraggio dell’esecuzione del programma o come uscita relè

In alternativa, il relè può essere utilizzato come uscita (contatto in commutazione), attivato per mezzo di flag.

Per la descrizione del funzionamento e della configurazione, vedere

3.9 Relè watchdog (relè) ..
“3.9.1 .. come funzione watchdog”
“3.9.2 .. come uscita relè”

Per la piedinatura, vedere

“6.1.4 Uscita digitale” > “Piedinatura per la funzione watchdog”
> “Piedinatura per l’uscita relè”
9 Manutenzione

9.1 Nessuna richiesta di manutenzione

I controllori PCD1.M2220-C15 non richiedono manutenzione.

Le CPU PCD1 contengono piccoli componenti sostituibili dall'utente. Nel caso in cui si verifichino problemi inerenti all'hardware, rispedire i dispositivi a Saia-Burgess Controls AG (vedere l'indirizzo nel capitolo allegato).
A Allegato

A.1 Simboli

A.1.1 Avvertenze

Questo simbolo nelle istruzioni per l’uso invita il lettore a consultare informazioni più dettagliate all’interno del presente manuale oppure in altri manuali o documenti tecnici. Per motivi di principio, si è rinunciato al collegamento diretto a questi documenti.

Attenersi sempre alle indicazioni accompagnate da questo simbolo.

A.1.2 Denominazioni accessorie

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Denominazione</th>
<th>Funzionalità</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>ground (massa)</td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>digital ground (massa digitale)</td>
<td></td>
</tr>
<tr>
<td>AGND</td>
<td>analog ground (massa analogica)</td>
<td></td>
</tr>
<tr>
<td>SGND</td>
<td>signal ground (massa segnale)</td>
<td></td>
</tr>
<tr>
<td>a, b, ..</td>
<td>alphanumeric index by different grounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(indice alfanumerico con masse differenti)</td>
<td></td>
</tr>
</tbody>
</table>
A.2 Definizione delle interfacce seriali

A.2.1 RS-485

Segnali a RS-485

<table>
<thead>
<tr>
<th>Tipo di segnale</th>
<th>Stato logico</th>
<th>Polarità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segnale dati</td>
<td>0 (vuoto)</td>
<td>RX-TX positivo su /RX-/TX</td>
</tr>
<tr>
<td></td>
<td>1(carattere)</td>
<td>/RX-/TX positivo su RX-TX</td>
</tr>
</tbody>
</table>

VOZ = 0,9 V min.
VOH = 1,5 V min. (con carico) ... 3,6 V max. (senza carico)
VOL = -1,5 V min. (con carico) ... -3,6 V max. (senza carico)

Non tutti i produttori utilizzano la stessa configurazione per il collegamento; pertanto, potrebbe essere necessario incrociare le linee dati.

Per garantire l’esercizio senza errori di una rete RS-485, questa deve essere collegata su entrambe le terminazioni. Scegliere i cavi e le resistenze terminali in conformità al manuale 26-740 "Componenti d’installazione per reti RS-485".
A.3 Disposizioni d’installazione e contatti relè

A.3.1 Disposizioni d’installazione per la commutazione di bassissima tensione

Per motivi di sicurezza, su questo modulo è possibile commutare tensioni di max. 50 V.

Lo standard di sicurezza, che interessa le distanze di scariche in aria e correnti di dispersione tra canali limitrofi, non è applicabile a questo modulo per tensioni maggiori (50...250 V).

Prestare attenzione affinché tutti i collegamenti ai contatti relè del modulo ..A250 siano collegati allo stesso circuito, in altre parole che sia consentita soltanto 1 fase per modulo. I singoli circuiti sotto carico, al contrario, possono essere protetti individualmente.

A.3.2 Disposizioni d’installazione per la commutazione di bassa tensione

Per motivi di sicurezza, la bassissima tensione (fino a 50 V) e la bassa tensione (50...250 V) non possono essere collegate allo stesso modulo.

Se un modulo del sistema Saia PCD® viene collegato alla bassa tensione (50...250 V), è necessario impiegare componenti, omologati per la bassa tensione, per tutti gli elementi collegati galvanicamente a questo sistema.

In caso d’impiego della bassa tensione, tutti i collegamenti ai contatti relè del modulo ..A200 devono essere collegati allo stesso circuito, in altre parole è consentita soltanto 1 fase per modulo tramite 1 fusibile comune. I singoli circuiti sotto carico, al contrario, possono essere protetti individualmente.
Disposizioni d’installazione e contatti relè

PCD2.A220

- Carico
- max. 6 A
- max. 6 A

PCD2.A250

- Carico
- max. 8 A
- max. 8 A
A.3.3 Commutazione di carichi induttivi

Una disattivazione senza disturbi dell’induttività non è possibile in virtù delle proprietà fisiche dell’induttività stessa. Per quanto possibile, questi disturbi devono essere ridotti al minimo. Sebbene il modello Saia PCD® sia immune a questi disturbi, vi sono altri dispositivi che possono risentirne.

Si ricorda anche che, nell’ambito dell’armonizzazione normativa della UE, gli standard EMC sono in vigore dal 1996 (Direttiva EMC 89/336/EC). Pertanto è possibile stabilire due principi:

- **LA SOPPRESSIONE DI DISTURBI NEI CARICHI INDUTTIVI È ASSOLUTAMENTE FONDAMENTALE!**
- **I DISTURBI DEVONO ESSERE ELIMINATI POSSIBILMENTE IN CORRISPONDENZA DELLA LORO SORGENTE!**

I contatti relè sul presente modulo sono commutati. Tuttavia, si consiglia di applicare un soppressore in corrispondenza del carico.

(Spesso disponibile come componenti di serie per protezioni e ventole standard).

In caso di commutazione della tensione continua, si consiglia vivamente di applicare un diodo anti-ritorno verso il carico. Questa condizione è applicabile anche se, in teoria, viene commutato un carico ohmico. Una percentuale di induttività sarà sempre presente nella prassi (cavo di collegamento, avvolgimento di resistenza, ecc.).

Premere attenzione affinché il tempo di disattivazione sia prolungato.

(Ta ca. L/RL * √ (RL * IL/0,7).

Per la tensione continua si consigliano moduli di uscita transistor.

A.3.4 Indicazioni del costruttore di relè in merito alle dimensioni dell’elemento RC.

Configurazioni di protezione dei contatti:

Il motivo delle configurazioni di protezione dei contatti risiede nella soppressione dell’arco elettrico di commutazione ("scintilla di accensione") e, di conseguenza, nel raggiungimento di una durata più estesa dei contatti. Ciascuna configurazione di protezione può presentare dei vantaggi e degli svantaggi. Per l’estinzione dell’arco elettrico tramite elemento RC, consultare la figura sottostante.

In caso di disattivazione di circuiti sotto carico con componenti induttivi (ad es. bobine relè e avvolgimenti magnetici), con l’interruzione della corrente in corrispondenza dei contatti di commutazione si forma una sovratensione (tensione di auto-induzione) che può portare a un aumento della tensione di esercizio e mette in pericolo l’isolamento del circuito sotto carico. La scintilla di apertura che ne risulta porta a una rapida usura dei contatti relè. Per questo motivo, nei circuiti sotto carico induttivi, la configurazione della protezione dei contatti ricopre un ruolo particolarmente importante. Anche i valori per la combinazione RC possono essere determinati in base al diagramma sottostante; tuttavia, per la tensione U deve essere impiegata la sovratensione formatasi durante l’interruzione della corrente (misurata ad es. con un oscilloscopio).

La corrente dovrà essere calcolata da questa tensione e dalla resistenza nota sulla quale è stata misurata.

Nei soppressori è consentito utilizzare esclusivamente condensatori di soppressione a norma VDE 0565 T1 classe X2. Questi condensatori sono resistenti alle commutazioni e sono predisposti per sovratensioni di commutazione particolarmente elevate. Inoltre, è possibile il funzionamento diretto sulla tensione di rete.
Le resistenze impiegate devono tollerare tensioni elevate (resistenza agli impulsi). Proprio con valori di resistenza ridotti, possono formarsi scariche di tensione sull'affilatura della spirale tipica della produzione. Tra i soprpressori, trovano particolare impiego le resistenze a massa di carbone. Tuttavia, sono idonee anche le resistenze a filo vetrose oppure le resistenze in cemento con passo grande della spirale.

Ausilio di dimensionamento:
Il valore di C si ottiene direttamente dalla corrente di commutazione. Il valore della resistenza R s’individua tracciando una linea retta attraverso i punti corrispondenti della curva I e U e rilevando la resistenza nel punto d’intersezione con la curva R.

Esempio:
U = 100 V I = 1 A
C si ottiene direttamente con 0,1 μF
R = 10 Ω (punto d’intersezione con scala R)
A.4 Abbreviazioni

<table>
<thead>
<tr>
<th>Abbreviazione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Elemento: nichel (sonde di misura della temperatura in nichel)</td>
</tr>
<tr>
<td></td>
<td>Coefficiente di temperatura $\alpha = 6,0 \cdot 10^{-3} [K^{-1}]$</td>
</tr>
<tr>
<td>NTC</td>
<td>Conduttore a caldo: sonde di misura della temperatura con coefficiente di temperatura negativo</td>
</tr>
<tr>
<td>Pt</td>
<td>Elemento: platino (sonde di misura della temperatura in platino)</td>
</tr>
<tr>
<td></td>
<td>Coefficiente di temperatura $\alpha = 3,92 \cdot 10^{-3} [K^{-1}]$</td>
</tr>
<tr>
<td>PTC</td>
<td>Conduttore a freddo: sonde di misura della temperatura con coefficiente di temperatura positivo</td>
</tr>
</tbody>
</table>
A.5 Glossario

<table>
<thead>
<tr>
<th>Termo</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWL</td>
<td>Lista Istruzioni (codice di programmazione riga per riga)</td>
</tr>
<tr>
<td>Backup</td>
<td>Salvataggio dei dati su un secondo supporto dati.</td>
</tr>
<tr>
<td>Batteria di riserva</td>
<td>Conservazione del contenuto in memoria e funzionamento continuo dell’orologio in seguito alla disattivazione della tensione di alimentazione.</td>
</tr>
<tr>
<td>Builder</td>
<td>Riunisce diverse fasi di lavoro per caricare un programma, se conforme, nel PCD.</td>
</tr>
<tr>
<td>Compilatore</td>
<td>Un compilatore (dall’inglese “compile” → compilare) è un programma che traduce il testo sorgente (in inglese source code) di un programma in sequenze di caratteri comprensibili per il computer di destinazione.</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit → Unità processore centrale. Nella famiglia Saia PCD®, s’intende l’alloggiamento principale con unità centrale.</td>
</tr>
<tr>
<td>Device</td>
<td>Dispositivo → Controllore (elemento essenziale di un progetto in Saia PG5® Project Manager).</td>
</tr>
<tr>
<td>Download</td>
<td>Abbr. “DnLd” → Salvataggio di dati in PCD</td>
</tr>
<tr>
<td>Elemento</td>
<td>Nella famiglia Saia PCD®, s’intendono gli ingressi e le uscite, i flag, i registri, i contatori, i timer ecc.</td>
</tr>
<tr>
<td>FRAM</td>
<td>Memoria digitale, ferroelettrica, non volatile. Conserva i dati in assenza di corrente.</td>
</tr>
<tr>
<td>IL</td>
<td>Instruction List (codice di programmazione AWL riga per riga)</td>
</tr>
<tr>
<td>Indirizzo di base</td>
<td>Primo indirizzo numerico dello slot per modulo I/O.</td>
</tr>
<tr>
<td>Linker</td>
<td>Dopo che il compilatore ha svolto la propria attività, il “linker” aggiunge i singoli file a un programma.</td>
</tr>
<tr>
<td>LIO (Local Input Output)</td>
<td>Ingressi/uscite sulla piastra della CPU (on-board).</td>
</tr>
<tr>
<td>Media</td>
<td>S’intendono gli ingressi/le uscite, i flag, i registri ecc. nella famiglia PCD.</td>
</tr>
<tr>
<td>Media Mapping</td>
<td>Con Media Mapping si intende l’assegnazione degli I/O digitali ed analogici a flag e registri, necessaria al software, con l’ausilio di una tabella.</td>
</tr>
<tr>
<td>Memoria Flash</td>
<td>Memoria digitale non volatile. Conserva i dati in assenza di corrente.</td>
</tr>
<tr>
<td>Moduli</td>
<td>Schede con l’elettronica d’ingresso/uscita con tecnica di collegamento idonea.</td>
</tr>
<tr>
<td>Motherboard</td>
<td>Scheda principale (CPU)</td>
</tr>
<tr>
<td>NT</td>
<td>Nuova tecnologia → la generazione successiva alla prima generazione PCD.</td>
</tr>
<tr>
<td>On-board</td>
<td>Indica tutto ciò che è saldamente montato “sulla scheda di base della CPU”.</td>
</tr>
<tr>
<td>Parser</td>
<td>Un parser è spesso un componente di un compilatore che verifica la correttezza della sintassi del programma.</td>
</tr>
<tr>
<td>PGU</td>
<td>Programmable Unit → Unità di programmazione</td>
</tr>
<tr>
<td>PLC</td>
<td>Process Logic Controller → in inglese PLC → Controllore a logica programmabile.</td>
</tr>
<tr>
<td>PLC</td>
<td>Controllore a logica programmabile → si veda PLC</td>
</tr>
<tr>
<td>Porta</td>
<td>Denominazione di un’interfaccia</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-Width Modulation → La modulazione a larghezza d’impulso è un tipo di modulazione nella quale una misura tecnica (ad es. la corrente elettrica) commuta tra due valori.</td>
</tr>
<tr>
<td>Restore</td>
<td>Caricamento nel PCD dei dati salvati sul supporto dati.</td>
</tr>
<tr>
<td>RIO</td>
<td>Remote Input Output → Ingressi/uscite su supporti del modulo raggiungibili dalla CPU tramite collegamenti bus.</td>
</tr>
<tr>
<td>Risorse</td>
<td>Ingressi/uscite, flag, registri, contatori, timer ecc.</td>
</tr>
<tr>
<td>ROM</td>
<td>Read only memory → Memoria di sola lettura Memoria fissa digitale, conserva i dati in assenza di corrente.</td>
</tr>
<tr>
<td>Scheda SD</td>
<td>Secure Digital Memory Card → Scheda di memoria digitale, conserva i dati in assenza di corrente.</td>
</tr>
<tr>
<td>Slot</td>
<td>Slot per moduli I/O.</td>
</tr>
<tr>
<td>SPM</td>
<td>Saia PG5® Project Manager, programma principale del pacchetto Saia PG5®.</td>
</tr>
<tr>
<td>SuperCap</td>
<td>Componente elettronico (condensatore) che eroga corrente per un breve periodo. Conservazione del contenuto in memoria e funzionamento dell’orologio in seguito alla disattivazione della tensione di alimentazione.</td>
</tr>
<tr>
<td>Supporto modulo</td>
<td>S’intendono i dispositivi CPU, LIO o RIO in cui sono alloggiati moduli I/O.</td>
</tr>
<tr>
<td>Terminatore</td>
<td>La terminazione (ad es. con resistenze terminali) consente di prevenire riflessioni elettriche in corrispondenza delle estremità dei cavi.</td>
</tr>
</tbody>
</table>
A.6 Contatti

Saia Burgess Controls Italia S.r.l.
Via Philips, 12
20900 Monza (MB), Italia

Telefono centralino.............. +39 039 216 52 28
Fax.................................... +39 039 216 52 88
E-mail supporto: info.it@saia-pcd.com
Sito Web: www.saia-pcd.it

Saia-Burgess Controls AG
Bahnhofstrasse 18
3280 Murten, Svizzera

Telefono centralino................. +41 26 580 30 00
Telefono supporto SBC +41 26 580 31 00
Fax..................................... +41 26 580 34 99
E-mail supporto: support@saia-pcd.com
Sito Web supporto: www.sbc-support.com
Sito Web SBC: www.saia-pcd.com

Rappresentanze internazionali
e società rivenditrici SBC: www.saia-pcd.com/contact

Indirizzo postale per resi di clienti che hanno acquistato in Svizzera

Saia-Burgess Controls AG
Service Après-Vente
Bahnhofstrasse 18
3280 Murten, Svizzera